Answer: 1.25 grams of Potassium-40
Explanation: When the amount of a compound is consumed by half, the time passed is called "the half life". This term is particularly important in nuclear chemistry. Potassium-40 is an isotope of potassium element and it is radioactive. As a result, the consumption time of this radioactive isotope is valuable information since radioactive isotopes are detrimental to health and nature.
For example, in this question, within 1.3 billion years, half amount of the potassium-40 disappears. 2.6 billion years ago, there were 5 grams of potassium-40 and when 1.3 billion years pass, half of the 5 grams of potassium-40 will disappear and there will will be 2.5 grams of potassium-40 left (5 grams of potassium-5 grams of potassium*(1/2)[half amount]=2.5 grams of potassium-40 left). As a result, 2.5 grams of potassium-40 is the amount that is present 1.3 billion years ago (2.6 billion years-1.3 billion years [half-life]=1.3 billion years). There will be 1.3 billion years left until today, so we still have to calculate the amount disappeared in 1.3 billion years. Thus, half of the 2.5 grams must disappear in 1.3 billion years left (2.5 grams - 2.5 grams*(1/2)[half amount]=1.25 grams). Finally, we have 1.25 grams of potassium-40 left since 2.6 billion years ago.
Answer:
P₂ = 450 kiloPascals
Explanation:
Boyle's law :))
P₁V₁ = P₂V₂
300*75 = P₂*50
P₂*50= 300*75
P₂ = 300*75/50 = 450
P₂ = 450 kiloPascals
<em>The weight has expanded because of pressure of gas.</em>
Explanation:
4=true
5. true
hope this helps. good luck with your test.
Answer:
0.54 mole of H2O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2CH3OH + 3O2 —> 2CO2 + 4H2O
From the balanced equation above,
2 moles of CH3OH reacted to produce 4 moles of water.
Finally, we shall determine the number of mole of water (H2O) produced by the reaction of 0.27 moles of CH3OH. This can be obtained as follow:
From the balanced equation above,
2 moles of CH3OH reacted to produce 4 moles of water.
Therefore, 0.27 moles of CH3OH will react to produce = (0.27 × 4)/2 = 0.54 mole of H2O.
Thus, 0.54 mole of H2O is produced from the reaction.
The balanced chemical equation for the Haber-Bosch process is N₂(g) + 3H₂(g) → 2NH₃(g). The Haber-Bosch process played a significant role in boosting agriculture back in the day. It paved the way for the industrial production of ammonia which is used in the manufacture of fertilizers. The process involves reacting atmospheric N₂ with H₂ using a metal catalyst under high temperature and pressure.