Answer:
Final temperature of the aluminum = 41.8 °C
Explanation:
We have the equation for energy
E = mcΔT
Here m = 55 g = 0.055 kg
ΔT = T - 27.5
Specific heat capacity of aluminum = 921.096 J/kg.K
E = 725 J
Substituting
E = mcΔT
725 = 0.055 x 921.096 x (T - 27.5)
T - 27.5 = 14.31
T = 41.81 ° C = 41.8 °C
Final temperature of the aluminum = 41.8 °C
Answer:
JA
Explanation:
s of time, (b) the velocity and acceleration at t = 2.0 s, (c) the time at which the position is a maximum, (d) the time at which the velocity is zero, and (e) the maximum position. Assume all variable and constants are in SI units.
Given
initial position = Xi= 19.9m
Final position Xf = 5.4m
Average velocity= Va = -0.418m/s
it shows displacement is reverse.
To find t=?
As Va = (Xf- Xi) / t
t = (Xf-Xi) / ( Va)
t = ( 5.4-19.9) / (-0.418)
t = (-14.5 ) / (-0.418) (-ve sign cancel out at numerator and denominator)
t =34.69 s
Answer:
62.8 μC
Explanation:
Here is the complete question
The volume electric charge density of a solid sphere is given by the following equation: ρ = (0.2 mC/m⁵)r²The variable r denotes the distance from the center of the sphere, in spherical coordinates. What is the net electric charge (in μC) of the sphere if the radius of the sphere is 0.5 m?
Solution
The total charge on the sphere Q = ∫∫∫ρdV where ρ = volume charge density = 0.2r² and dV = volume element in spherical coordinates = r²sinθdθdrdΦ
So, Q = ∫∫∫ρdV
Q = ∫∫∫ρr²sinθdθdrdΦ
Q = ∫∫∫(0.2r²)r²sinθdθdrdΦ
Q = ∫∫∫0.2r⁴sinθdθdrdΦ
We integrate from r = 0 to r = 0.5 m, θ = 0 to π and Φ = 0 to 2π
So, Q = ∫∫∫0.2r⁴sinθdθdrdΦ
Q = ∫∫∫0.2r⁴[∫sinθdθ]drdΦ
Q = ∫∫0.2r⁴[-cosθ]drdΦ
Q = ∫∫0.2r⁴-[cosπ - cos0]drdΦ
Q = ∫∫∫0.2r⁴-[-1 - 1]drdΦ
Q = ∫∫0.2r⁴-[- 2]drdΦ
Q = ∫∫0.2r⁴(2)drdΦ
Q = ∫∫0.4r⁴drdΦ
Q = ∫0.4r⁴dr∫dΦ
Q = ∫0.4r⁴dr[Φ]
Q = ∫0.4r⁴dr[2π - 0]
Q = ∫0.4r⁴dr[2π]
Q = ∫0.8πr⁴dr
Q = 0.8π∫r⁴dr
Q = 0.8π[r⁵/5]
Q = 0.8π[(0.5 m)⁵/5 - (0 m)⁵/5]
Q = 0.8π[0.125 m⁵/5 - 0 m⁵/5]
Q = 0.8π[0.025 m⁵ - 0 m⁵]
Q = 0.8π[0.025 m⁵]
Q = (0.02π mC/m⁵) m⁵
Q = 0.0628 mC
Q = 0.0628 × 10⁻³ C
Q = 62.8 × 10⁻³ × 10⁻³ C
Q = 62.8 × 10⁻⁶ C
Q = 62.8 μC