red goes to red, black goes to white, yellow goes to green, blue goes to blue.
(6) Wagon B is at rest so it has no momentum at the start. If <em>v</em> is the velocity of the wagons locked together, then
(140 kg) (15 m/s) = (140 kg + 200 kg) <em>v</em>
==> <em>v</em> ≈ 6.2 m/s
(7) False. If you double the time it takes to perform the same amount of work, then you <u>halve</u> the power output:
<em>E</em> <em>/</em> (2<em>t </em>) = 1/2 × <em>E/t</em> = 1/2 <em>P</em>
<em />
Answer:
θ=142.9°
Explanation:
d=1 *r
angle ϕ= 37.1°
the line connecting pebble and target should be tangent to a circle so
cos(180-ϕ-θ)=
=
∴ θ=180-ϕ-
θ= 180-37.1-0
θ=142.9°
Answer:
mass = 0.18 [kg]
Explanation:
This is a classic problem where we can apply the definition of density which is equal to mass over volume.
![density = \frac{mass}{volume} \\\\where:\\volume = 1 [m^3]\\density = 0.18[kg/m^3]](https://tex.z-dn.net/?f=density%20%3D%20%5Cfrac%7Bmass%7D%7Bvolume%7D%20%5C%5C%5C%5Cwhere%3A%5C%5Cvolume%20%3D%201%20%5Bm%5E3%5D%5C%5Cdensity%20%3D%200.18%5Bkg%2Fm%5E3%5D)
mass = 0.18*1
mass = 0.18 [kg]
Let's just assume that you throw the ball with an initial speed of 2 m/s instead of dropping it like free falling.
a=9.81 m/s^2
Vi= 2 m/s
t= 3 x
we use the formula
d = (Vi)(t) + (1/2)(a)(t)^2
d= (2)(3) + (1/2)(9.81)(9)
d=50.145 m