Answer: 148348.6239 kg•m/s
Explanation: Firstly, we need to convert the 14700 N into kilograms, and to do so, use the formula net force is equal to mass times acceleration and rearrange the formula to find mass like shown below...
F = ma
F/a = m
14700/9.81 = 1498.470948 kg, this is your mass
Now that we convert it into kilograms, plug all the numbers into the variable of the momentum formula.
Momentum formula is P = mass x velocity
Like this:
P = 1498.470948 x 99
p = 148348.6239 kg•m/s.
I believe that is your answer, hope that helps you even a bit out.
Thanks.
Answer:
R = m⁴/kg . s
Explanation:
In this case, the best way to solve this is working with the units in the expression.
The units of velocity (V) are m/s
The units of density (d) are kg/m³
And R is a constant
If the expression is:
V = R * d
Replacing the units and solving for R we have
m/s = kg/m³ * R
m * m³ / s = kg * R
R = m * m³ / kg . s
<h2>
R = m⁴ / kg . s</h2>
This should be the units of R
Hope this helps
You will have to "put force against the object to slow it down." Momentum is the force that is keeping a object moving in a certain direction so if you would want to slow down the object you will have to put another force against the object to slow it down or stop it. For example: a person kicks a ball, the ball moving is the momentum. So, if you would want to stop the ball you would have t put something in its path to slow it down which is the decreasing of it's momentum. Therefore you would put a bump in the wall and when the ball hits the bump it slows down.
Hope this helps!