<em>I</em><em> </em><em>do</em><em> </em><em>not</em><em> </em><em>understand</em><em> </em><em>science</em><em> </em><em>but</em><em> </em><em>if</em><em> </em><em>u</em><em> </em><em>ask</em><em> </em><em>me</em><em> </em><em>I</em><em> </em><em>would</em><em> </em><em>have</em><em> </em><em>no</em><em> </em><em>clue</em><em> </em><em>do</em><em> </em><em>u</em><em> </em><em>get</em><em> </em><em>what</em><em> </em><em>I</em><em> </em><em>mean</em>
Answer:
pH = 6.999
The solution is acidic.
Explanation:
HBr is a strong acid, a very strong one.
In water, this acid is totally dissociated.
HBr + H₂O → H₃O⁺ + Br⁻
We can think pH, as - log 7.75×10⁻¹² but this is 11.1
acid pH can't never be higher than 7.
We apply the charge balance:
[H⁺] = [Br⁻] + [OH⁻]
All the protons come from the bromide and the OH⁻ that come from water.
We can also think [OH⁻] = Kw / [H⁺] so:
[H⁺] = [Br⁻] + Kw / [H⁺]
Now, our unknown is [H⁺]
[H⁺] = 7.75×10⁻¹² + 1×10⁻¹⁴ / [H⁺]
[H⁺] = (7.75×10⁻¹² [H⁺] + 1×10⁻¹⁴) / [H⁺]
This is quadratic equation: [H⁺]² - 7.75×10⁻¹² [H⁺] - 1×10⁻¹⁴
a = 1 ; b = - 7.75×10⁻¹² ; c = -1×10⁻¹⁴
(-b +- √(b² - 4ac) / (2a)
[H⁺] = 1.000038751×10⁻⁷
- log [H⁺] = pH → 6.999
A very strong acid as HBr, in this case, it is so diluted that its pH is almost neutral.
Answer:

Explanation:
1. Given that,
Initial speed of a bicycle, u = 4 m/s
The final speed of a bicycle, v = 6 m/s
Time, t = 6 s
We need to find the acceleration of the bicycle. We know that, acceleration is equal to the change in speed divided by time taken. So,

So, the acceleration of the bicycle is equal to
.