Explanation:
Significant figure is the measure of how accurately something can be measured. It carries meaning contributing to its measurement resolution. It is important to use proper number of significant figures to get a precise measurement. For example, if we use a meter stick then measurements like 0.874 meters, or 0.900 meters, are good because they indicate that we can measure to the nearest millimeter. Whereas a measurement like 0.8 does not tell that a meter stick can measure to the nearest millimeter.
Answer:
To know this
get the pH
pH= -log(H+)
pH= -log(1x10^-5)
pH= 5.
It is Acidic.
Acidic ranges from 1 - 7
It falls within this range
Answer:
The correct option is B
Explanation:
One of the claims of John Dalton's atomic theory is that atom is the smallest unit of matter (which suggests that there are no particles smaller than an atom in any matter). This claim has been disproved by the modern atomic theory which established that there are particles smaller than atom (called subatomic particles). These particles are electrons, protons and neutrons.
One of the modern atomic theory was by Neils Bohr, who proposed that <u>electrons move in circular orbits around the central nucleus</u>. Thus, the electrons of iron can also be said to be present in a region of space (circular path) around the nucleus. This proves that option B is the correct option as John Dalton's theory did not even recognize the electron(s) nor the nucleus.
Answer: 25.8 g of
will be produced from the decomposition of 73.4 g of
Explanation:
To calculate the moles :

The balanced chemical reaction is:
According to stoichiometry :
2 moles of
produce = 3 moles of 
Thus 0.242 moles of will produce=
of 
Mass of
= 
Thus 25.8 g of
will be produced from the decomposition of 73.4 g of
Albert Einstein showed in one of his papers in 1905 that Brownian motion could be explained by assuming that matter is made up of tiny particles. His paper predicted how the motion should look like and also allowed for the calculation of the mass of a single molecule.
Current evidence includes:
1. Individual ions (atoms with an electric charge) can be manipulated using electric and magnetic fields.
2. Elevation maps can now be made that show bumps caused by individual atoms.