Answer:
The nucleus, that dense central core of the atom, contains both protons and neutrons.
So to answer your question yes it does contain all of the protons in the atom.
* Hopefully this helps:) Mark me the brainliest:)!
Answer:
a) The heat which we supply to water during boiling is used to overcome these forces of attraction between the particles so that they become totally free and change into a gas. This latent heat does not increase the kinetic energy of water particles and hence no rise in temperature takes place during the boiling of water.
b) Steam produces more severe burns than boiling water even though both are at 100oC because steam contains more heat, in the form of latent heat, than boiling water.
Explanation:
i hope this will help u
Answer:
Raster Image Correlation Spectroscopy (RICS) is a novel new technique for measuring molecular dynamics and confocal fluorescence imaging concentrations. RICS technique extracts information on molecular dynamics and concentrations of live cell images taken in commercial confocal systems
Explanation:
RICS analysis must be performed on images acquired through raster scanning. Laser scanning microscopes generate images by measuring the fluorescence intensity in one area of a pixel at a time (a 'pixel' in this context does not have the same definition as a pixel in computer graphics, but refers to a measurement of localized intensity). The value of a pixel is obtained by illuminating a region of the sample with the focal volume of a laser beam and measuring the intensity of the fluorescence emitted. The laser beam moves to a new location and a new pixel is recorded. Each pixel can be considered to correspond to a region of the sample, with its width (called pixel size) defined by the distance the beam moves between measurements. This means that the size of a pixel is separate and independent from the size of the focal volume of the laser beam.
Formal charge can be calculated from the following formula
Formal charge = valency of central atom - (number of lone pair of electrons + number of covalent bonds)
a) for methylene:
Formal charge = 4 -( 2+ 2) = 0
b) For methyl free radical
Formal charge = 4- (3 +1) = 0
Answer:
The total energy of the photons detected in one hour is 7.04*10⁻¹¹ J
Explanation:
The energy carried by electromagnetic radiation is displaced by waves. This energy is not continuous, but is transmitted grouped into small "quanta" of energy called photons. The energy (E) carried by electromagnetic radiation can be measured in Joules (J). Frequency (ν or f) is the number of times a wave oscillates in one second and is measured in cycles / second or hertz (Hz). The frequency is directly proportional to the energy carried by a radiation, according to the equation: E = h.f, (where h is the Planck constant = 6.63 · 10⁻³⁴ J / s).
Wavelength is the minimum distance between two successive points on the wave that are in the same state of vibration. it is expressed in units of length (m). In light and other electromagnetic waves that propagate at the speed of light (c), the frequency would be equal to the speed of light (≈ 3 × 10⁸ m / s) between the wavelength :

So:

In this case, the wavelength is 3.35mm=3.35*10⁻³m and the energy per photon is:

E=5.93*10⁻²³ 
The detector is capturing 3.3*10⁸ photons per second. So, in 1 hour:

E=7.04*10⁻¹¹ 
The total energy of the photons detected in one hour is 7.04*10⁻¹¹ J