The difference between a substance and a mixture is that a substance is one of a kind, a material of the same composition throughout, on the contrary, a mixture is one or more different substances brought together and mixed together without changing the nature of each single substance.
One way to test it is to take two substances like sand and table salt. They should each be in granular form and in adequate amount to mix. Neither substance has changed after mixing the two. Even though it may not be easy or convenient to accomplish, each substance could be separated out from the mixture.
When it comes to two substances in lump form, it would not be a mixture when one lump is positioned next to the other lump because there are not enough pieces to combine.
However, there could be a mixture of three substances, like sand, table salt and graphite powder and there could be a mixture with four substances, etc., ad infinitum.
Mixtures are of solid substances in general. On the other hand, one starts referring to solutions when liquids are involved. Gases can be a mixture like for example, air is a mixture with nitrogen, oxygen, argon, etc.
Answer:
because water wets stuff expect for fire.
Answer:
NaCl consists of one atom each of sodium and chlorine. Hence, each molecule of NaCl has 2 atoms total.
Explanation:
You can have a solution of hydrogen peroxide that might say 10% that means that 10% per mass of the hydrogen peroxide solution is the hydrogen peroxide the rest is water.
concentration is the amount of mass in the solution eg 5gdm-3
hope that helps
Silicon is the element having a mass of 28.09 g
<u>Explanation</u>:
- Silicon is the element having an atomic mass of 28.09 g / mol. So 28.09 g of silicon contains 6.023
10^23 atoms. One mole of each element can produce one mole of compound.
- The Atomic weight of an element can be determined by the number of protons and neutrons present in one atom of that element. So atomic weight expressed in grams always contain the same number of atoms( 6.023
10^23).
- Avagadro number is the number of atoms of 1 mole of any gas at standard temperature and pressure. It has been determined that 6.023
10^23 atoms of an element are equal to the average atomic mass of that element.