I can’t see it if you send a photo I can help
The child is <u>59.4 inches tall</u>, assuming the length from the coach's shoulder to his head cap is approximately 10 inches.
<h3>What is Heigth?</h3>
Height refers to the vertical distance between the top and bottom of something.
Height measures the length of some objects or persons vertically to determine whether it is high or low, according to some ascertained criteria.
<h3>Data and Calculations:</h3>
Baseball coach's height = 70 inches
Coach's shoulder to head = 10.6 inches
Height of the child standing slightly below the coach's shoulder = 59.4 inches (70 - 10.6)
Thus, the child standing slightly below the coach's shoulder is 59.4 inches tall.
Learn more about height measurements at brainly.com/question/73194
#SPJ1
<h3>Question Completion:</h3>
Assume that the height of the coach from his shoulder to the head is 10.6 inches.
Perhaps the easiest way to find the midpoint between two given points is to average their coordinates: add them up and divide by 2.
A) The midpoint C' of AB is
.. (A +B)/2 = ((0, 0) +(m, n))/2 = ((0 +m)/2, (0 +n)/2) = (m/2, n/2) = C'
The midpoint B' is
.. (A +C)/2 = ((0, 0) +(p, 0))/2 = (p/2, 0) = B'
The midpoint A' is
.. (B +C)/2 = ((m, n) +(p, 0))/2 = ((m+p)/2, n/2) = A'
B) The slope of the line between (x1, y1) and (x2, y2) is given by
.. slope = (y2 -y1)/(x2 -x1)
Using the values for A and A', we have
.. slope = (n/2 -0)/((m+p)/2 -0) = n/(m+p)
C) We know the line goes through A = (0, 0), so we can write the point-slope form of the equation for AA' as
.. y -0 = (n/(m+p))*(x -0)
.. y = n*x/(m+p)
D) To show the point lies on the line, we can substitute its coordinates for x and y and see if we get something that looks true.
.. (x, y) = ((m+p)/3, n/3)
Putting these into our equation, we have
.. n/3 = n*((m+p)/3)/(m+p)
The expression on the right has factors of (m+p) that cancel*, so we end up with
.. n/3 = n/3 . . . . . . . true for any n
_____
* The only constraint is that (m+p) ≠ 0. Since m and p are both in the first quadrant, their sum must be non-zero and this constraint is satisfied.
The purpose of the exercise is to show that all three medians of a triangle intersect in a single point.
Answer:
The area should be 170
Step-by-step explanation:
L× W =70×10=170