The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation
In this problem, the first object has a mass of

, while the second "object" is the Earth, with mass

. The distance of the object from the Earth's center is

; if we substitute these numbers into the equation, we find the force of gravity exerted by the Earth on the mass of 0.60 kg:
Answer:
<em>Explanation below</em>
Explanation:
<u>Speed vs Velocity
</u>
These are two similar physical concepts. They only differ in the fact that the velocity is vectorial, i.e. having magnitude and direction, and the speed is scalar, just the magnitude regardless of the direction. They are strongly related to the concepts of displacement and distance, which are the vectorial and scalar versions of the space traveled by a moving object. The velocity can be computed as

Where
is the position vector and t is the time. The speed is

To compute
, we only need to know the initial and final positions and subtract them. To compute d, we need to add all the distances traveled by the object, regardless of their directions.
Maggie walks to a friend's house, located 1500 meters from her place. The initial position is 0 and the final position is 1500 m. The displacement is

and the velocity is

Now, we know Maggie had to make three different turns of direction to finally get there. This means her distance is more than 1500 m. Let's say she walked 500 m in all the turns, then the distance is

If she took the same time to reach her destiny, she would have to run faster, because her average speed is

Answer:
1. Hydrogen
2. Helium
Explanation:
Nuclear fusion is when two atoms of Hydrogen join together to form one Helium atom.
I think this is the solution:
1: U-1, F,-4
2: Na-6, Mo-1, O-4
3: Bi-1, O-1, C-1, I-1
4: In-9, N-1
5: N-2, H-4, S-1, C-1
6: Ge- 15, N-4
7: N-1, H-4, C-1, I-1, O-3
8: H-7, F-1
9: N-1, O-5, H-1, S-1
10: H-8
11: Nb-1, O-1, C-1, I-3
12: C-3, F-3, S-1, O-3, H-1
13: Ag-1, C-1, N-1, O-1
14: Pb-6, H-1, As-1, O-4
The average velocity of the car for the whole journey is 69.57 km/h.
The given parameters:
- <em>Length of the road, L = 320 km</em>
- <em>Distance covered = 240 km at 75 km/h</em>
- <em>time spent refueling, t₂ = 0.6 hr</em>
- <em>Final velocity, = 100 km/hr</em>
The time spent by the before refueling is calculated as follows;

The time spent by the car for the remaining journey;

The total time of the journey is calculated as follows;

The average velocity of the car for the whole journey is calculated as follows;

Learn more about average velocity here: brainly.com/question/6504879