Answer
given,
flow rate = p = 660 kg/m³
outer radius = 2.8 cm
P₁ - P₂ = 1.20 k Pa
inlet radius = 1.40 cm
using continuity equation
A₁ v₁ = A₂ v₂
π r₁² v₁ = π r₁² v₂



Applying Bernoulli's equation





v₂ = 1.97 m/s
b) fluid flow rate
Q = A₂ V₂
Q = π (0.014)² x 1.97
Q = 1.21 x 10⁻³ m³/s
The force applied to lift the crate is 171 N
Explanation:
The lever works on the principle of equilibrium of moments, so we can write:

where
is the force in input
is the arm of the input force
is the output force
is the arm of the output force
For the lever in this problem, we have:


(force applied)
Solving the equation for
, we find the force applied to lift the crate:

Learn more about levers:
brainly.com/question/5352966
#LearnwithBrainly
Explanation:
energy conservation and fatigue management -tiredness is a common symptom of a heart attack and although rest is important activity is also required to facilitate a return to health. an occupational therapist said energy conservation and fatigue management is techniques to be implemented throughout the day. to help clients achieve their goals
Explanation:
Given that,
Electric field = 5750 N/C
Charge 
Distance = 5.50 cm
(a). When the charge is moved in the positive x- direction
We need to calculate the change in electric potential energy
Using formula of electric potential energy



Put the value into the formula


The change in electric potential energy is 
(b). When the charge is moved in the negative x- direction
We need to calculate the change in electric potential energy
Using formula of electric potential energy



Put the value into the formula


The change in electric potential energy is 
Hence, This is the required solution.