Answer:
less energy is needed to heat the house
the roof is a better insulator
True, because for example you are on a bus and you want to know if you are moving or not so you look at a house which doesn't move and stays stationary.
Answer:
512.5 mJ
Explanation:
Let the two identical charges be q = +35 µC and distance between them be r₁ = 46 cm. A charge q' = +0.50 µC located mid-point between them is at r₂ = 46 cm/2 = 23 cm = 0.23 m.
The electric potential at this point due to the two charges q is thus
V = kq/r₂ + kq/r₂
= 2kq/r₂
= 2 × 9 × 10⁹ Nm²/C² × 35 × 10⁻⁶ C/0.23 m
= 630/0.23 × 10³ V
= 2739.13 × 10³ V
= 2.739 MV
When the charge q' is moved 12 cm closer to either of the two charges, its distance from each charge is now r₃ = r₂ + 12 cm = 23 cm + 12 = 35 cm = 0.35 m and r₄ = r₂ - 12 cm = 23 cm - 12 cm = 11 cm = 0.11 cm.
So, the new electric potential at this point is
V' = kq/r₃ + kq/r₄
= kq(1/r₃ + 1/r₄)
= 9 × 10⁹ Nm²/C² × 35 × 10⁻⁶ C(1/0.35 m + 1/0.11 m)
= 315 × 10³(2.857 + 9.091) V
= 315 × 10³ (11.948) V
= 3763.62 × 10³ V
= 3.764 MV
Now, the work done in moving the charge q' to the point 12 cm from either charge is
W = q'(V' - V)
= 0.5 × 10⁻⁶ C(3.764 MV - 2.739 MV)
= 0.5 × 10⁻⁶ C(1.025 × 10⁶) V
= 0.5125 J
= 512.5 mJ
Answer:
The force of the ball on the bat is same as the force of the bat on the ball.
Explanation:
A bat hits the ball and the ball moves to the out filed.
According to the Newton's third law, for every action there is an equal and opposite reaction.
The action and the reaction forces acts on the two different bodies but the magnitude of the force is same.
As the ball is hitted by the bat, the bat exerts the force on the ball and the same force is exerted on the bat by the ball according to the Newton's third law.
So, the force of the ball on the bat is same as the force of the bat on the ball but the direction of force is opposite.