1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allochka39001 [22]
3 years ago
9

I need help ASAP please

Mathematics
2 answers:
galina1969 [7]3 years ago
6 0
I honestly don’t know






Sorry sweety
kifflom [539]3 years ago
6 0
In an exponential function, the base (number under the exponent) determines whether the function is growing or decaying.
When b > 1, it is growing.
When b < 1, it is decaying.
In this case, the base is 1.71, so this is a growth function.
To find the rate of change of a growth function, subtract 1 from the base. The growth rate of increase is 0.71, or 71%.
You might be interested in
-3+3w=-18<br> I need help please
Rzqust [24]

Answer:

w=-5

Step-by-step explanation:

3w=-18+3

3w=-15

w=-5

7 0
3 years ago
Read 2 more answers
(6,2),(3,5),(9,0),(5,7),(8,1)<br> Domain and range
exis [7]

Step-by-step explanation:

domain(6,3,9,5,8)

range(2,5,0,7,1)

8 0
3 years ago
Show all work to identify the asymptotes and zero of the function f(x) = 6x / x^2 - 36
eduard

Answer:

Zero of the function f(x) is at x = 0

Vertical Asymptotes at x = ±6

Horizontal Asymptotes at y = 0

Step-by-step explanation:

<h3>Vertical Asymptotes </h3>

For a given function f(x):

Vertical Asymptotes are obtained at those values of x, where the function f(x) tends to infinity, I.e.,

<em>When</em><em> </em><em>x</em><em> </em><em>approaches</em><em> </em><em>some</em><em> </em><em>constant</em><em> </em><em>value</em><em> </em><em>b</em><em>u</em><em>t</em><em> </em><em>th</em><em>e</em><em> </em><em>curve</em><em> </em><em>moves</em><em> </em><em>towards</em><em> </em><em>infinity</em><em>.</em><em> </em>

  • If f(x) is a fraction, it'll tend to infinity when it's denominator becomes zero.

Vertical Asymptotes of the given function can be obtained by walking thru the following steps:

<u>Step I</u>

(Factorise the numerator and denominator)

\mathsf{ f(x) = \frac{6x}{ {x}^{2} - 36 } }

<em>x</em><em>²</em><em> </em><em>-</em><em> </em><em>36</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>facto</em><em>rised</em><em> </em><em>into</em><em> </em><em>(</em><em>x</em><em> </em><em>+</em><em> </em><em>6</em><em>)</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>6</em><em>)</em>

<em>and</em><em>,</em><em> </em><em>ofcourse</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>write</em><em> </em><em>6</em><em>x</em><em> </em><em>as</em><em> </em><em>6</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>0</em><em>)</em><em> </em>

\mathsf{ f(x) = \frac{6(x - 0)}{ (x + 6)(x - 6) } }

<u>Step</u><u> </u><u>II</u>

(Reduce the fraction to its simplest form by canceling out the common factors)

<em>There aren't any common factors in the numerator and denominator in this case.</em>

<u>Step</u><u> </u><u>III</u>

(Look for the values of x which cause the denominator to be zero)

<em>If</em><em> </em><em>we</em><em> </em><em>put</em><em> </em>x = 6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em>

Also,

<em>If</em><em> </em><em>we</em><em> </em><em>substitute</em><em> </em><em>x</em><em> </em><em>with</em><em> </em> -6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em><em>.</em><em> </em>

The two values of x indicate the two Vertical Asymptotes of the function f(x).

Therefore,

<u>Vertical</u><u> </u><u>Asymptotes</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>function</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>are</u><u>:</u>

\boxed{ \mathsf{x =  \pm6}}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3 /><h3>Horizontal Asymptotes:</h3>

Horizontal Asymptotes are obtained When x tends to infinity and y approaches some constant value.

I'll be using the concept of limits for this.

\mathsf{y = \frac{6x}{ {x}^{2} - 36 }  }

<em>dividing</em><em> </em><em>and</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>x</em><em>²</em><em> </em><em>(</em><em>Yep</em><em>!</em><em> </em><em>so</em><em> </em><em>if</em><em> </em><em>x</em><em> </em><em>becomes</em><em> </em><em>infinity</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em>²</em><em> </em><em>all</em><em> </em><em>such</em><em> </em><em>terms</em><em> </em><em>become</em><em> </em><em>0</em><em>,</em><em> </em><em>'</em><em>cause</em><em> </em><em>1</em><em>/</em><em> </em><em>∞</em><em> </em><em>is</em><em> </em><em>0</em><em>)</em><em> </em>

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6x}{ {x}^{2} } }{  \frac{ {x}^{2} - 36 }{ {x}^{2} }  } ) }

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6}{ x } }{  1-  \frac{36 }{ {x}^{2} }  } ) }

Substitute x with ∞, you get zero/ 1

\implies  \boxed{\mathsf{y = 0}}

So, the horizontal Asymptote of the function is y = 0, that is the x axis

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3>Zeroes of a function:</h3>

The values of x that reduces f(x) to zero are called the zeroes of f(x).

Here, only x = 0 acts as the zero of the function.

[NOTE:

  • For finding <u>Vertical Asymptotes</u><u>,</u>Equate the denominator to 0. And
  • For finding <u>Zeroes</u><u>,</u> Equate the numerator to 0]

__________________

[That's what it's graph looks like. ]

3 0
2 years ago
What's the GCF of 56 and 21?
Sedbober [7]
GCF means "greatest common factor."
When I learned this, I was told to try 5 numbers and see if they work and if not, it might be 1.
Those numbers are 2, 3, 5, 7, and 9.
2 goes into 56 but not 21.
3 goes into 21 but not 56.
5 doesn't go into 56 nor 21.
7 goes into both 56 and 21.
9 doesn't go into 56 nor 21.
So since 7 works with both numbers, try numbers divisible by 7 (i.e. 14, 21...)
14 goes into 56 but not 21.
21 goes into 21 but not 56.
You can't go any higher than that since then it would be going above 21.
So the GCF of 56 and 21 is 7.
5 0
3 years ago
How do you find the angle??​
Karo-lina-s [1.5K]

Answer:

An obtuse triangle is a triangle that has a single obtuse angle, which is an angle that measures more than 90 degrees and less than 180 degrees. Obtuse triangles, also referred to as oblique triangles, can be recognized by their having a single significantly larger angle and two smaller angles. Since every triangle has a measurement of 180 degrees, a triangle can only have one obtuse angle. You can calculate an obtuse triangle using the lengths of the triangle's sides.

Square the length of both sides of the triangle that intersect to create the obtuse angle, and add the squares together. For example, if the lengths of the sides measure 3 and 2, then squaring them would result in 9 and 4. Adding the squares together results in 13.

Square the length of the side opposite the obtuse angle. For the example, if the length is 4, then squaring it results in 16.

Step-by-step explanation:

8 0
2 years ago
Other questions:
  • A group of biologists found a total of 15 loggerhead turtle nests along a beach during a certain season. This was 20% of the tot
    7·1 answer
  • Simplify: -3(y + 2)^2– 5 + 6y<br> What is the simplified product in standard form?
    6·2 answers
  • Let f(x) = 4x – 1, h(x) = -x-1.<br><br> Find (f o h)(6)<br><br> (foh)(6) =
    9·1 answer
  • Company A is trying to sell its website to Company B. As part of the sale, Company A claims that the average user of their site
    5·1 answer
  • How do u write 4,584.01 in scientific notation​
    11·1 answer
  • Ms. Medina asked the class to solve the equation 2(x+4)=18.
    14·2 answers
  • The probability that a newborn baby at a certain hospital is male is 50%. Find the probability that 7 or 8 out of 10 babies born
    11·1 answer
  • How do you get the equation of the line in fully simplified slope-intercept form?​
    11·1 answer
  • A bank account has a beginning balance of $460.00. After 6 months, the balance in the account has increased to
    9·1 answer
  • Please help i don't understand!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!