The mass m of the object = 5.25 kg
<h3>Further explanation</h3>
Given
k = spring constant = 3.5 N/cm
Δx= 30 cm - 15 cm = 15 cm
Required
the mass m
Solution
F=m.g
Hooke's Law
F = k.Δx
Answer:
Q = 47.06 degrees
Explanation:
Given:
- The transmitted intensity I = 0.464 I_o
- Incident Intensity I = I_o
Find:
What angle should the principle axis make with respect to the incident polarization
Solution:
- The relation of transmitted Intensity I to to the incident intensity I_o on a plane paper with its principle axis is given by:
I = I_o * cos^2 (Q)
- Where Q is the angle between the Incident polarized Light and its angle with the principle axis. Hence, Using the relation given above:
Q = cos ^-1 (sqrt (I / I_o))
- Plug the values in:
Q = cos^-1 ( sqrt (0.464))
Q = cos^-1 (0.6811754546)
Q = 47.06 degrees
Hello,
The purpose of the defense is to <span>prevent the opposing offense from advancing the ball.
Explanation: Defense is to defend our team or group so that the other team or group does not win or take the ball from us or even advance the ball.
Hope this helped!
~HotTwizzlers</span>
Answer: An equation is missing in your question below is the missing equation
a) ≈ 8396
b) 150 nm/k
Explanation:
<u>A) Determine the number of Oscillators in the black body</u>
number of oscillators = 8395
attached below is the detailed solution
<u>b) determine the peak wavelength of the black body </u>
Black body temperature = 20,000 K
applying Wien's law / formula
λmax = b / T ------ ( 1 )
T = 20,000 K
b = 3 * 10^6 nm
∴ λmax = 150 nm/k