This problem is looking for the minimum value of μs that is
necessary to achieve the record time. To solve this problem:
Assuming the front wheels are off the ground for the entire
¼ mile = 402.3 m, the acceleration a = µs·9.8 m/s².
For a constant acceleration, distance = 402.3
m = 1/2at^2 = 804.6 m / (4.43 s)^2 = a = µs·9.8 m/s^2
µs = 804.6 m / (4.43s)^2 / 9.8 m/s^2 = 4.18
Answer:
im pretty sure about C
Explanation:
a switch acts a resistor that can be turned on and off
Also it's the same for Automotive purposes
Answer:
1) The speed of sound increases
2) 440 Hz
3) 29°C
4) 17°C
5) 434 Hz
6) 12 m/s
7) 17.3 m
Explanation:
1) The speed of sound increases
2) V = f×λ
f = V/λ = 343/0.78 = 439.744 ≈ 440 Hz
3) V = f×λ
512 × 0.68 = 348.16 m/s
348.16 - 331 = 17.16
T = 17.16/0.6 = 28.6 ≈ 29°C
4) Increase in speed = 350 - 340 = 10
Increase in temperature = 10/0.6 = 16.67° ≈ 17°C
5) f = V/λ = 343/0.79 = 434 Hz
6) 331 + 0.6×30 - (331 × 0.6 ×10) = 12 m/s
7) V = 331 + 0.6×25 = 346m/s
λ = 346/20 = 17.3 m
Answer:
Mass of the vehicle and small bug.
Explanation:
- By Newton's third law, force on bug and vehicle will be same when they collide with each other irrespective of their masses.
- But according to Newton's second law, force is mass times acceleration. Since the force on each mass is same, the smaller mass will accelerate more and the heavier mass will accelerate less for the same force.
- Therefore the acceleration of bug will be very greater than vehicle as the mass of the bug is very small as compared to vehicle.
Learn more about Newton's law.
brainly.com/question/974124
#SPJ10
First, let us calculate for the volume of the block of
lead using the formula:
V = l * w * h
But we have to convert all units in terms of cm:
l = 2.0 dm = 20 cm
w = 8 cm
h = 3.5 cm
Therefore the volume is:
V = (20 cm) * (8 cm) * (3.5 cm)
V = 560 cm^3
Next we convert the mass in terms of g:
m = 6.356 kg = 6356 g
Density is mass over volume, so:
density = 6356 g / 560 cm^3
density = 11.35 g / cm^3 (ANSWER)