Its 1.6 kg
Remember
E = 1/2mv^2 is the kinetic energy of the ball. The energy is given to you so you need to solve for mass. Rearranging the equation gives you 2E/v^2 = 1.6
Answer:
The horse is going at 12.72 m/s speed.
Explanation:
The initial speed of the horse (u) = 3 m/s
The acceleration of the horse (a)= 5 m/
The displacement( it is assumed it is moving in a straight line)(s)= 15.3 m
Applying the second equation of motion to find out the time,



Solving this quadratic equation, we get time(t)=1.945 s, the other negative time is neglected.
Now applying first equation of motion, to find out the final velocity,



v=12.72 m/s
The horse travels at a speed of 12.72 m/s after covering the given distance.
If the 5,500 J of sound and light is the ONLY useful output
from the phone, then the phone's efficiency is
(5,500J / 10,000J) = 0.55 = 55% .
But the test engineer forgot one little minor almost insignificant detail.
As a test engineer myself, I'd say that he needs to turn in his laptop
and soldering iron, and think about changing his career to a job for
which he may be better suited, like 8 hours a day in a highway toll-booth.
What about that little radio transmitter and receiver inside the phone,
that maintain digital RF communication with the nearest cell tower ?
Without that microscopic radio transceiver ... plus 30 or 40 apps
that are always running unless you shut them off ... the device in your
pocket is essentially a flat rock with one side that sometimes glows.
In order to solve this problem, we will first need to find the electric field at the origin without the 3rd charge
E1 = (9x10^9)(13.4x10^-9)/(9.4x10^-2)^2 = 13648.7 V/m towards the negative y-axis
E2 = (9x10^9)(4.23x10^-9)/(4.99x10^-2)^2 = 15289.1 V/m towards the positive x-axis
The red arrow shows the direction of which the electric field points.
To make the electric field at the origin 0, we must find a location where q3 = the magnitude of q1 and q2
Etotal = sqrt(E1+E2) = 20494.97 V/m
E3 = 20494.97 = (9x10^9)(14.23x10^-9)/(d)^2
d = 0.079 m = 7.9 cm
Answer:
No.
Explanation:
The force that two particle experience is inversely proportional to the sqare of the distance, this is:
for a distance D
If we move them so that D is doubled:
= 
Then the force they experience is one fourth of the original.