1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
3 years ago
11

Energy is conventionally measured in Calories as well as in joules. One Calorie in nutrition is one kilocalorie, defined as 1 kc

al = 4 186 J. Metabolizing 1 g of fat can release 9.00 kcal. A student decides to try to lose weight by exercising. He plans to run up and down the stairs in a football stadium as fast as he can and as many times as necessary. To evaluate the program, suppose he runs up a flight of 95 steps, each 0.150 m high, in 57.5 s. For simplicity, ignore the energy he uses in coming down (which is small). Assume that a typical efficiency for human muscles is 20.0%. Therefore when your body converts 100 J from metabolizing fat, 20 J goes into doing mechanical work (here, climbing stairs). The remainder goes into extra internal energy. Assume that the student's mass is 65.0 kg.
a. How many times must the student run the flight of stairs to lose 1.00 kg of fat?
b. What is his average power output, in watts and horsepower, as he runs up the stairs?
c. Is this activity in itself a practical way to lose weight?
Physics
1 answer:
IgorC [24]3 years ago
3 0

Answer:

The answers to the questions are;

a. The number of times the student run the flight of stairs to lose 1.00 kg of fat is 829.23 times.

b. The average power output, in watts and horsepower, as he runs up the stairs is 158.026 watts.

c. The act of climbing the stairs is not a practical way to lose weight has to lose 1 kg of fat, the student needs to workout for about 26.49 hrs or 1.104 days.

Explanation:

To solve the question, we write out the known variables as follows

1 g of fat = 9.00kcal

Number of steps the student climbs = 95 steps

Height of each step = 0.150 m

Time it takes for the student to reach the top of the stairs = 57.5 s.

Efficiency of human muscles = 20 %

Mass of student, m = 65 kg

a. From the question, the energy expended by the student in climbing the stairs is the "work done" by the student.

The "work done" is the height climbed resulting in the gaining of gravitational potential energy P. E..

That is work done, W, =  P. E. = m·g·h

Where:

h = The total height climbed by the student

g = Acceleration due to gravity = 9.81 m/s²

Therefore;

h = Height of each step × Number of steps the student climbs =

  = 0.150 m/(step) × 95 steps = 14.25 m

Therefore, P. E. = 65 kg × 9.81 m/s² × 14.25 m = 9086.5125 kg·m²/s²

                          = 9086.5125 J

We remember that the efficiency of the muscle is 20 %

The formula for efficiency is

Efficiency = \frac{Ene rgy Out put}{Energ y In put} \times 100 %

The work produced by the muscle =  Energy Output = 9086.5125 J

Energy input is given by

\frac{Out put} {Effici ency} = 9086.5125 J/ (0.2) = 45432.5625 J

= 45.432 kJ

From the question, 1 g of fat = 9.00 kcal and

1 kcal = 4186 J

Therefore 1 g of fat can release 9.00 kcal × 4186 J = 37674 J

Therefore 1 kg of fat = 1000 g = 1000 × 37674 J = 37674 kJ

To consume the energy in 1 kg of fat the student therefore will run up the foight of stairs \frac{37674 kJ}{45.432 kJ} times to make up the 37674 kJ energy contained in 1 kg of fat

That is  \frac{37674 kJ}{45.432 kJ} =  829.23 times

b. Power is the rate of doing work

That is Power output = \frac{ WorkO utput }{Time} = \frac{9086.5125 J}{57.5 s} = 158.026 watts

c. No as the activity student will have to spend a total time of

829.23 × 57.5 s = 47680.67 s climbing up the stairs alone  and

47680.67 s = ‪13.24 Hours climbing up of which if the time to climb down is the same s climbing up, then we ave total time = 2× ‪13.24 Hours  

= 26.49 hrs = 1.104 days exercising which is not humanly possible.

You might be interested in
Describe what happens to chromosomes before mitosis.
Brums [2.3K]

Explanation:

Before mitosis, the chromosomes are copied. They then coil up, and each chromosome looks like a letter X in the nucleus of the cell. The chromosomes now consist of two sister chromatids. Mitosis separates these chromatids, so that each new cell has a copy of every chromosome

6 0
3 years ago
Show how the alternative definition of power, found in your book, can be derived by substituting the definitions of work and spe
Harman [31]

Let us consider body moves a distance S due to the force F.

Hence the work by the body W = FS

If the force is not along the direction of displacement,then the work by a body for travelling a distance S will be -

                                       W=[ Fcos\theta]*S  where    Fcos\theta is the component of the force along the direction of displacement.

                                  Hence\ W= FScos\theta

                                                        = F.S

As per the question the power P is given as -

                                                  P=\frac{W}{\delta t}

                                                         =\frac{F.S}{\delta t}

                                                         = F.\frac{S}{\delta t}

                                                         = \ F.V

Hence alternative definition of power P = F.V


8 0
3 years ago
Read 2 more answers
What is the temperature of a 3.72 mm cube (e=0.288) that radiates 56.6 W?
blsea [12.9K]

Answer:

The temperature is 2541.799 K

Explanation:

The formula for black body radiation is given by the relation;

Q = eσAT⁴

Where:

Q = Rate of heat transfer 56.6

σ = Stefan-Boltzman constant = 5.67 × 10⁻⁸ W/(m²·k⁴)

A = Surface area of the cube = 6×(3.72 mm)² = 8.3 × 10⁻⁵ m²

e = emissivity = 0.288

T = Temperature

Therefore, we have;

T⁴ = Q/(e×σ×A) = 56.6/(5.67 × 10⁻⁸ × 8.3 × 10⁻⁵ × 0.288) = 4.174 × 10¹⁴ K⁴

T  =  2541.799 K

The temperature = 2541.799 K.

7 0
4 years ago
Why is the steering of a car wheel and axle​
Effectus [21]

Answer:

because a smaller cylinder shaped wheel, called the axel ,connects the wheels on a car.

8 0
3 years ago
Read 2 more answers
A closely wound circular coil has a radius of 6.00 cmand carries a current of 2.65 A. How many turns must it have if the magneti
ad-work [718]

Answer:

Given:

radius of the coil, R = 6 cm = 0.06 m

current in the coil, I = 2.65 A

Magnetic field at the center, B = 6.31\times 10^{4} T

Solution:

To find the number of turns, N, we use the given formula:

B = \frac{\mu_{o}NI}{2R}

Therefore,

N = \frac{2BR}{\mu_{o}I}

N = \frac{2\times 6.31\times 10^{4}\times 0.06}{4\pi \times 10^{- 7}\times 2.65}

N = 22.74 = 23 turns (approx)

 

8 0
3 years ago
Other questions:
  • An FM radio station broadcasts electromagnetic radiation at a frequency of 93.5 MHz. The wavelength of this radiation is _______
    11·1 answer
  • What percentage of the world's energy needs is supplied by fossil fuels?
    15·1 answer
  • You are studying sunlight passing through the top layer of the atmosphere of venus to learn about its composition. what type of
    9·1 answer
  • Se puede apelar la circunstancias para justificar una decisión que afecta a otras personas
    14·1 answer
  • Two carts (m1 = m2 = 0.400 kg) are placed on an aluminum track. The first cart is pushed with the initial velocity of 1.5 m/s to
    8·1 answer
  • Blending three primary colors of light
    13·1 answer
  • It turns out that the depth in the ocean to which airborne electromagnetic signals can be detected grows with the wavelength. Th
    6·1 answer
  • basic component of matter, it is composed of a nucleus which is the central part, the protons and electorns
    9·1 answer
  • Why is calcium chloride an ionic bond
    6·2 answers
  • What is a possible state of an object in the absence of a net force?a.)at restb.)constant velocity c.)zero accelerationd.)all of
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!