1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
3 years ago
5

Tell which of the ordered pairs is a solution to the equation y=1/2x+2 (0,1) (2,2) (4,4) or (-2,1)

Mathematics
1 answer:
Softa [21]3 years ago
4 0

y = 1/2 x+2

y = 0 +2

(0,2)

y = (1/2)* 2 +2

(2,3)

y =1/2*4+2

(4,4)   Yes!

You might be interested in
Write the scientific notation for 2,460,000
Diano4ka-milaya [45]
It would be equalto 2.4 * 10^6
4 0
3 years ago
The length of a rectangle is three times it’s width. The area of the rectangle is 48 square centimeters. Find the measures of th
denis-greek [22]
---------------------------------------------------------------------------------
Define length and width
---------------------------------------------------------------------------------
Let the width be x
Width = x
Length = 3x

---------------------------------------------------------------------------------
Form equation and solve for x
---------------------------------------------------------------------------------
x(3x) = 48
3x² = 48
x² = 48 ÷ 3
x² = 16
x = √16
x = 4

---------------------------------------------------------------------------------
Find length and width
---------------------------------------------------------------------------------
Width = x = 4
Length = 3x = 3(4) = 12

---------------------------------------------------------------------------------
Answer: Width = 4cm, Length = 12cm
---------------------------------------------------------------------------------
7 0
3 years ago
***<br> -6<br> Simplify 21v6 ÷ (-7v-6)<br> O 0<br> -3y¹2<br> -3<br> 12<br> 0 -3<br> DONE<br> 0 0
-Dominant- [34]

Answer:

-3

Step-by-step explanation:

\frac{  21y {}^{ - 6} }{ - 7y {}^{ - 6} }  \\  - 3y {}^{ - 6 - ( - 6)}  \\  - 3y {}^{ - 6 + 6}  \\  - 3y {}^{0}  \\  - 3(1) \\  - 3

3 0
2 years ago
What is the common ratio of these numbers written as a fraction <br> 768,480,300,187.5
kolbaska11 [484]

Answer:

Step-by-step explanation:

im pretty sure it is 768/187.5 = about 4

because you are taking the highest number and putting it over the lowest number

4 0
3 years ago
Part I - To help consumers assess the risks they are taking, the Food and Drug Administration (FDA) publishes the amount of nico
IRINA_888 [86]

Answer:

(I) 99% confidence interval for the mean nicotine content of this brand of cigarette is [24.169 mg , 30.431 mg].

(II) No, since the value 28.4 does not fall in the 98% confidence interval.

Step-by-step explanation:

We are given that a new cigarette has recently been marketed.

The FDA tests on this cigarette gave a mean nicotine content of 27.3 milligrams and standard deviation of 2.8 milligrams for a sample of 9 cigarettes.

Firstly, the Pivotal quantity for 99% confidence interval for the population mean is given by;

                                  P.Q. =  \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample mean nicotine content = 27.3 milligrams

            s = sample standard deviation = 2.8 milligrams

            n = sample of cigarettes = 9

            \mu = true mean nicotine content

<em>Here for constructing 99% confidence interval we have used One-sample t test statistics as we don't know about population standard deviation.</em>

<u>Part I</u> : So, 99% confidence interval for the population mean, \mu is ;

P(-3.355 < t_8 < 3.355) = 0.99  {As the critical value of t at 8 degree

                                      of freedom are -3.355 & 3.355 with P = 0.5%}  

P(-3.355 < \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } } < 3.355) = 0.99

P( -3.355 \times {\frac{s}{\sqrt{n} } } < {\bar X-\mu} < 3.355 \times {\frac{s}{\sqrt{n} } } ) = 0.99

P( \bar X-3.355 \times {\frac{s}{\sqrt{n} } } < \mu < \bar X+3.355 \times {\frac{s}{\sqrt{n} } } ) = 0.99

<u />

<u>99% confidence interval for</u> \mu = [ \bar X-3.355 \times {\frac{s}{\sqrt{n} } } , \bar X+3.355 \times {\frac{s}{\sqrt{n} } } ]

                                          = [ 27.3-3.355 \times {\frac{2.8}{\sqrt{9} } } , 27.3+3.355 \times {\frac{2.8}{\sqrt{9} } } ]

                                          = [27.3 \pm 3.131]

                                          = [24.169 mg , 30.431 mg]

Therefore, 99% confidence interval for the mean nicotine content of this brand of cigarette is [24.169 mg , 30.431 mg].

<u>Part II</u> : We are given that the FDA tests on this cigarette gave a mean nicotine content of 24.9 milligrams and standard deviation of 2.6 milligrams for a sample of n = 9 cigarettes.

The FDA claims that the mean nicotine content exceeds 28.4 milligrams for this brand of cigarette, and their stated reliability is 98%.

The Pivotal quantity for 98% confidence interval for the population mean is given by;

                                  P.Q. =  \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample mean nicotine content = 24.9 milligrams

            s = sample standard deviation = 2.6 milligrams

            n = sample of cigarettes = 9

            \mu = true mean nicotine content

<em>Here for constructing 98% confidence interval we have used One-sample t test statistics as we don't know about population standard deviation.</em>

So, 98% confidence interval for the population mean, \mu is ;

P(-2.896 < t_8 < 2.896) = 0.98  {As the critical value of t at 8 degree

                                       of freedom are -2.896 & 2.896 with P = 1%}  

P(-2.896 < \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } } < 2.896) = 0.98

P( -2.896 \times {\frac{s}{\sqrt{n} } } < {\bar X-\mu} < 2.896 \times {\frac{s}{\sqrt{n} } } ) = 0.98

P( \bar X-2.896 \times {\frac{s}{\sqrt{n} } } < \mu < \bar X+2.896 \times {\frac{s}{\sqrt{n} } } ) = 0.98

<u />

<u>98% confidence interval for</u> \mu = [ \bar X-2.896 \times {\frac{s}{\sqrt{n} } } , \bar X+2.896 \times {\frac{s}{\sqrt{n} } } ]

                                          = [ 24.9-2.896 \times {\frac{2.6}{\sqrt{9} } } , 24.9+2.896 \times {\frac{2.6}{\sqrt{9} } } ]

                                          = [22.4 mg , 27.4 mg]

Therefore, 98% confidence interval for the mean nicotine content of this brand of cigarette is [22.4 mg , 27.4 mg].

No, we don't agree on the claim of FDA that the mean nicotine content exceeds 28.4 milligrams for this brand of cigarette because as we can see in the above confidence interval that the value 28.4 does not fall in the 98% confidence interval.

5 0
2 years ago
Other questions:
  • Look at triangle ABC. What is the Length of the side AB of the triangle? A. 2 B. Squ. Root 20 C. 6 Squ. Root 38
    14·1 answer
  • Person A buys 12 granola bars and 7 cups of yogurt for $15.50. Person B buys 6 granola bars and 11 cups of yogurt for $11.50. Fi
    9·1 answer
  • Answer number 32 please
    6·2 answers
  • What is the precent of 10/12
    8·1 answer
  • 2/3x = 27 please help
    12·1 answer
  • Plz help!!!!!!!!!!!!!!
    15·2 answers
  • Hiroto's texting plan costs $20 per month, plus $0.05 per
    9·2 answers
  • Find the measure of angle A<br><br> Plss help luvs
    6·1 answer
  • Something costs $10.39 and i get 02.59lbs what would it cost
    13·1 answer
  • Please help me i dont want to fail
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!