The four strokes in order are the intake stroke, the compression stroke, the power stroke, and the exhaust stroke. Fuel is ignited during the power stroke.
<u>Answer</u>
1) A. 96 Candelas
2) A. Both of these types of lenses have the ability to produce upright images.
3) C. 5 meters
<u>Explanation</u>
Q1
The formula for calculation the luminous intensity is;
Luminous intensity = illuminance × square radius
Lv = Ev × r²
= 6 × 4²
= 6 × 16
= 96 Candelabra
Q2
For converging lenses, an upright image is formed when the object is between the lens and the principal focus while a diverging lens always forms and upright image.
A. Both of these types of lenses have the ability to produce upright images.
Q3
Luminous intensity = illuminance × square radius
square radius = Luminous intensity/ illuminance
r² = 100/4
= 25
r = √25
= 5 m
Answer:
1.) 11 km/s
2.) 9.03 × 10^-5 metres
Explanation:
Given that an electron enters a region of uniform electric field with an initial velocity of 64 km/s in the same direction as the electric field, which has magnitude E = 48 N/C.
Electron q = 1.6×10^-19 C
Electron mass = 9.11×10^-31 Kg
(a) What is the speed of the electron 1.3 ns after entering this region?
E = F/q
F = Eq
Ma = Eq
M × V/t = Eq
Substitute all the parameters into the formula
9.11×10^-31 × V/1.3×10^-9 = 48 × 1.6×10^-19
V = 7.68×10^-18 /7.0×10^-22
V = 10971.43 m/s
V = 11 Km/s approximately
(b) How far does the electron travel during the 1.3 ns interval?
The initial velocity U = 64 km/s
S = ut + 1/2at^2
S = 64000×1.3×10^-6 + 1/2 × 8.4×10^12 × ( 1.3×10^-9)^2
S =8.32×10^-5 + 7.13×10^-6
S = 9.03 × 10^-5 metres
Observational studies are a prime example. Observational data is more reflective of the real environments that scientists make their inferences to than controlled experiments. The disadvantage of observational studies is that the variability is far greater. <span />
Answer:
ecosystem B
Explanation:
because it goes through more animal's and is correct