Storm weather likely happens in the town when the air masses meet because of difference of temperature and humidity of both air masses.
<h3>What weather happens when air masses meet?</h3>
When air masses move by wind, they carry different weather conditions from the weather conditions of other region. This difference in weather conditions can create a severe storm.
So we can conclude that Storm weather likely happens in the town when the air masses meet because of difference of temperature and humidity of both air masses.
Learn more about air here: brainly.com/question/636295
#SPJ1
1.Record her observation with the time it was hot.
2. Gather info about the pavement and its surroundings. Find out what it's made of and what its temp. is at different times of the day.
3. Come up with a hypothesis about why it is hot.
4. Design an experiment to test the hypothesis. If she thinks the Sun is responsible (which she should b smart enough to know), keep it covered during the day time and check it's temp.
5. Come up with a conclusion. If her hypothesis is not supported, design a new experiment or gather more info.
-- <u><em>Current is measured in amps.</em></u> (You can use any symbol you want to represent current, but the most common one is " I ", not "Δ".)
-- <u><em>The relationship between current, voltage, and resistance is mathematically defined by Ohm's Law. </em></u>
-- <u><em>Current is the flow of electrons through a circuit.</em></u>
-- (Ohm's Law is NOT mathematically represented by the equation V=I/R.) <u><em>It should be V = I · R</em></u> .
(When solving for Resistance in a circuit and both voltage and current are known values, the equation I =V*R is not true, and not the way to solve it.) <u><em>If the resistance is what you're looking for, then the equation to use is </em></u><u><em>R = V / I</em></u><u><em> . </em></u>
<em>-- </em><u><em>If the voltage in a circuit is increased, the current will also increase.</em></u>
Time taken to complete one oscillation for a pendulum is Time Period, T = 0.5 s
Frequency of the pendulum oscillation = 1 / Time Period => f = 1 / T = 1 / 0.5
Frequency f = 2 Hz
Answer:
1 million hahahahahahahahhahah