Answer:
1.4 * 10 ^-1 Ω
Explanation:
Hi,
For this question, we gotta use the formula
R = pL/A
p = The resistivity of your material at 20°C
L = length of the wire
A = cross-sectional area
The resistivity of tungsten is 5.60 * 10^-8 at 20°C
By plugging the values, we get:
R = (5.60 * 10^-8)(2.0)/(7.9*10^-7) = 1.4 * 10 ^-1 Ω
Answer:
0m/s
Explanation:
Since its fired at an angle, at the top there will be a split second where the velocity will be 0, as it has a parabolic shape, so the speed at the top of its path is 0
Answer:
this is the answer according to my calculations
Explanation:
0.001.9
Answer: B
Explanation:
It's not the time it took to heat the substance, so that rules out A and C.
This means that we only have to choose between
B. the area of contact
D. the area of the substances
(since everything else in each of those answers are the same)
Area of contact matters more (e.g. an object with greater surface area is exposed to the air more, will lose/gain heat quicker than an object with less surface area).
Answer:
There are <u>5</u> significant figures.
Explanation:
You must start conting your sig figs until you continue to hit zeros at the end. Those zeroes at the end are disregarded. So 0.0609 is where you get your <em>sig figs</em> from.