Answer:
b. v = 0, a = 9.8 m/s² down.
Explanation:
Hi there!
The acceleration of gravity is always directed to the ground (down) and, near the surface of the earth, has a constant value of 9.8 m/s². Since the answer "b" is the only option with an acceleration of 9.8 m/s² directed downwards, that would solve the exercise. But why is the velocity zero at the highest point?
Let´s take a look at the height function:
h(t) = h0 + v0 · t + 1/2 g · t²
Where
h0 = initial height
v0 = initial velocity
t = time
g = acceleration due to gravity
Notice that the function is a negative parabola if we consider downward as negative (in that case "g" would be negative). Then, the function has a maximum (the highest point) at the vertex of the parabola. At the maximum point, the slope of the tangent line to the function is zero, because the tangent line is horizontal at a maximum point. The slope of the tangent line to the function is the rate of change of height with respect to time, i.e, the velocity. Then, the velocity is zero at the maximum height.
Another way to see it (without calculus):
When the ball is going up, the velocity vector points up and the velocity is positive. After reaching the maximum height, the velocity vector points down and is negative (the ball starts to fall). At the maximum height, the velocity vector changed its direction from positive to negative, then at that point, the velocity vector has to be zero.
Answer:
All forms of energy are either kinetic or potential. The energy associated with motion is called kinetic energy . The energy associated with position is called potential energy . Potential energy is not "stored energy".
Explanation:
Answer : Yes, distance measurements based on the speed of light used for objects in space.
Explanation : A light year is measurement of distance that light travel in a one year.
In a one year light travels 9460000000000 kilometer.
We know that, speed of light is 
and time is 31536000 seconds in 1 year
so, distance = speed of light X time
Now, the light year is 
Example : The nearest star to earth is about 4.3 light year away.
With time, momentum increases as it builds speed assuming their is nothing in the way to stop it. Based on the graph, you can see that example being displayed as the line on the graph gets higher