Problem 3: Let x = price of bag of pretzels Let y = price of box of granola bars
We have Lesley's purchase: 4x+2y=13.50
And Landon's: 1x+5y=17.55
We can use the elimination method. Let's negate Landon's purchase by multiplying by -1. -1x-5y=-17.55
We add this four times to Lesley's purchase to eliminate the x variable.
2y-20y=13.50-70.2
-18y=-56.7
y = $3.15 = Price of box of granola bars
Plug back into Landon's purchase to solve for pretzels.
x+5*3.15=17.55
x+15.75=17.55
x = $1.80 = price of bag of pretzels
Problem 4.
Let w = number of wood bats sold
Let m = number of metal bats sold
From sales information we have: w + m = 23
24w+30m=606
Substitution works well here. Solve for w in the first equation, w = 23 - m, and plug this into the second.
24*(23-m)+30m=606
552-24m+30m=606
6m=54
m=9 = number of metal bats sold
Therefore since w = 23-m, w = 23-9 = 14. 14 wooden bats were sold.
Answer:
The first triangle is larger
Step-by-step explanation:
(1/2)(8)(10)=40
(1/2)(5)(13)=32.5
Answer : 7.5 ft
Step-by-step explanation:
when the length of the shadow is 8ft, the actual height of the man = 5ft
8:5
let the giraffe be 'x' ft tall.
if the length of the shadow is 12ft, actual height = x ft
12:x
8:5 x 12:x
× 
x=
x=7.5 ft
Therefore, the giraffe is 7.5ft tall.
By definition of covariance,
![\mathrm{Cov}(X,Y)=\mathbb E[(X-\mathbb E[X])(Y-\mathbb E[Y])]](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28X%2CY%29%3D%5Cmathbb%20E%5B%28X-%5Cmathbb%20E%5BX%5D%29%28Y-%5Cmathbb%20E%5BY%5D%29%5D)
![\mathrm{Cov}(X,Y)=\mathbb E[XY-\mathbb E[X]Y-X\mathbb E[Y]+\mathbb E[X]\mathbb E[Y]]=\mathbb E[XY]-\mathbb E[X]\mathbb E[Y]](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28X%2CY%29%3D%5Cmathbb%20E%5BXY-%5Cmathbb%20E%5BX%5DY-X%5Cmathbb%20E%5BY%5D%2B%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D%5D%3D%5Cmathbb%20E%5BXY%5D-%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D)
We have
![\mathbb E[(aX-b)(cY-d)]=\mathbb E[acXY-adX-bcY+bd]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5B%28aX-b%29%28cY-d%29%5D%3D%5Cmathbb%20E%5BacXY-adX-bcY%2Bbd%5D)
![=ac\mathbb E[XY]-ad\mathbb E[X]-bc\mathbb E[Y]+bd](https://tex.z-dn.net/?f=%3Dac%5Cmathbb%20E%5BXY%5D-ad%5Cmathbb%20E%5BX%5D-bc%5Cmathbb%20E%5BY%5D%2Bbd)
![\mathbb E[aX-b]=a\mathbb E[X]-b](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BaX-b%5D%3Da%5Cmathbb%20E%5BX%5D-b)
![\mathbb E[cY-d]=c\mathbb E[Y]-d](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BcY-d%5D%3Dc%5Cmathbb%20E%5BY%5D-d)
![\mathbb E[aX-b]\mathbb E[cY-d]=ac\mathbb E[X]\mathbb E[Y]-ad\mathbb E[X]-bc\mathbb E[Y]+bd](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BaX-b%5D%5Cmathbb%20E%5BcY-d%5D%3Dac%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D-ad%5Cmathbb%20E%5BX%5D-bc%5Cmathbb%20E%5BY%5D%2Bbd)
Putting everything together, we find the covariance reduces to
![\mathrm{Cov}(aX-b,cY-d)=ac(\mathbb E[XY]-\mathbb E[X]\mathbb E[Y])=ac\mathrm{Cov}(X,Y)](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28aX-b%2CcY-d%29%3Dac%28%5Cmathbb%20E%5BXY%5D-%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D%29%3Dac%5Cmathrm%7BCov%7D%28X%2CY%29)
as desired.
Let the four consecutive numbers be x,x+1,x+2,x+3.
Now the product of second and third number=(x+1)(x+2)=x²+3x+2=k
Product of first and fourth number=x(x+3)=x²+3x=k-2
A.T.Q
product of second and third number= product of first and fourth number+2
Hence proved