I’m pretty sure the answer would be A
Applying the angles of intersecting secants theorem, the measures of the arcs are:
m(KL) = 20°; m(MJ) = 80°.
<h3>What is the Angles Intersecting Secants Theorem?</h3>
When two secants intersect and form an angle outside the circle, the measure of the angle formed is half the positive difference of the measures of the intercepted arcs.
Given the following:
m∠MEJ = 1/2(MJ - KL)
30 = 1/2(MJ - KL)
60 = MJ - KL
KL = MJ - 60
m∠MFJ = 1/2(MJ + KL)
50 = 1/2(MJ + MJ - 60)
100 = 2MJ - 60
2MJ = 100 + 60
2MJ = 160
MJ = 160/2
MJ = 80°
KL = MJ - 60 = 80 - 60
KL = 20°
Thus, applying the angles of intersecting secants theorem, the measures of the arcs are:
m(KL) = 20°; m(MJ) = 80°.
Learn more about angles of intersecting secants theorem on:
brainly.com/question/1626547
3^2 = 9
9/9 = 1
1 + 12 = 13
This is based on the Order of Operations.
Hope it helps! :D
Answer:
6.18% of the class has an exam score of A- or higher.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean and standard deviation , the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
What percentage of the class has an exam score of A- or higher (defined as at least 90)?
This is 1 subtracted by the pvalue of Z when X = 90. So
has a pvalue of 0.9382
1 - 0.9382 = 0.0618
6.18% of the class has an exam score of A- or higher.
1) 48% of 8=3.84
2) 3% of 119=3.57
3) 26% of 32=8.32
4) <span>76% of 280=212.8
Hope this helps ya!</span>