1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mila [183]
3 years ago
15

Three couples and two single individuals have been invited to an investment seminar and have agreed to attend. Suppose the proba

bility that any particular couple or individual arrives late is 0.43 (a couple will travel together in the same vehicle, so either both people will be on time or else both will arrive late). Assume that different couples and individuals are on time or late independently of one another. Let X = the number of people who arrive late for the seminar.(a) Determine the probability mass function of X. [Hint: label the three couples #1, #2, and #3 and the two individuals #4 and #5.] (Round your answers to four decimal places.)x P(X = x)012345678(b) Obtain the cumulative distribution function of X. (Round your answers to four decimal places.)x F(x)012345678
Mathematics
1 answer:
Maksim231197 [3]3 years ago
8 0

Answer:

(a) Probability mass function

P(X=0) = 0.0602

P(X=1) = 0.0908

P(X=2) = 0.1704

P(X=3) = 0.2055

P(X=4) = 0.1285

P(X=5) = 0.1550

P(X=6) = 0.1427

P(X=7) = 0.0390

P(X=8) = 0.0147

NOTE: the sum of the probabilities gives 1.0068 for rounding errors. It can be divided by 1.0068 to get the adjusted values.

(b) Cumulative distribution function of X

F(X=0) = 0.0602

F(X=1) = 0.1510

F(X=2) = 0.3214

F(X=3) = 0.5269

F(X=4) = 0.6554

F(X=5) = 0.8104

F(X=6) = 0.9531

F(X=7) = 0.9921

F(X=8) = 1.0068

Step-by-step explanation:

Let X be the number of people who arrive late to the seminar, we can assess that X can take values from 0 (everybody on time) to 8 (everybody late).

<u>For X=0</u>

This happens when every couple and the singles are on time (ot).

P(X=0)=P(\#1=ot)*P(\#2=ot)*P(\#3=ot)*P(\#4=ot)*P(\#5=ot)\\\\P(X=0)=(1-0.43)^{5}=0.57^5= 0.0602

<u>For X=1</u>

This happens when only one single arrives late. It can be #4 or #5. As the probabilities are the same (P(#4=late)=P(#5=late)), we can multiply by 2 the former probability:

P(X=1) = P(\#4=late)+P(\#5=late)=2*P(\#4=late)\\\\P(X=1) = 2*P(\#1=ot)*P(\#2=ot)*P(\#3=ot)*P(\#4=late)*P(\#5=ot)\\\\P(X=1) = 2*0.57*0.57*0.57*0.43*0.57\\\\P(X=1) = 2*0.57^4*0.43=2*0.0454=0.0908

<u>For X=2</u>

This happens when

1) Only one of the three couples is late, and the others cooples and singles are on time.

2) When both singles are late , and the couples are on time.

P(X=2)=3*(P(\#1=l)*P(\#2=ot)*P(\#3=ot)*P(\#4=ot)*P(\#5=ot))+P(\#1=ot)*P(\#2=ot)*P(\#3=ot)*P(\#4=l)*P(\#5=l)\\\\P(X=2)=3*(0.43*0.57^4)+(0.43^2*0.57^3)=0.1362+0.0342=0.1704

<u>For X=3</u>

This happens when

1) Only one couple (3 posibilities) and one single are late (2 posibilities). This means there are 3*2=6 combinations of this.

P(X=3)=6*(P(\#1=l)*P(\#2=ot)*P(\#3=ot)*P(\#4=l)*P(\#5=ot))\\\\P(X=3)=6*(0.43^2*0.57^3)=6*0.342=0.2055

<u>For X=4</u>

This happens when

1) Only two couples are late. There are 3 combinations of these.

2) Only one couple and both singles are late. Only one combination of these situation.

P(X=4)=3*(P(\#1=l)*P(\#2=l)*P(\#3=ot)*P(\#4=ot)*P(\#5=ot))+P(\#1=l)*P(\#2=ot)*P(\#3=ot)*P(\#4=l)*P(\#5=l)\\\\P(X=4)=3*(0.43^2*0.57^3)+(0.43^3*0.57^2)\\\\P(X=4)=3*0.0342+ 0.0258=0.1027+0.0258=0.1285

<u>For X=5</u>

This happens when

1) Only two couples (3 combinations) and one single are late (2 combinations). There are 6 combinations.

P(X=6)=6*(P(\#1=l)*P(\#2=l)*P(\#3=ot)*P(\#4=l)*P(\#5=ot))\\\\P(X=6)=6*(0.43^3*0.57^2)=6*0.0258=0.1550

<u>For X=6</u>

This happens when

1) Only the three couples are late (1 combination)

2) Only two couples (3 combinations) and one single (2 combinations) are late

P(X=6)=P(\#1=l)*P(\#2=l)*P(\#3=l)*P(\#4=ot)*P(\#5=ot)+6*(P(\#1=l)*P(\#2=l)*P(\#3=ot)*P(\#4=l)*P(\#5=ot))\\\\P(X=6)=(0.43^3*0.57^2)+6*(0.43^4*0.57)\\\\P(X=6)=0.0258+6*0.0195=0.0258+0.1169=0.1427

<u>For X=7</u>

This happens when

1) Only one of the singles is on time (2 combinations)

P(X=7)=2*P(\#1=l)*P(\#2=l)*P(\#3=l)*P(\#4=l)*P(\#5=ot)\\\\P(X=7)=2*0.43^4*0.57=0.0390

<u>For X=8</u>

This happens when everybody is late

P(X=8)=P(\#1=l)*P(\#2=l)*P(\#3=l)*P(\#4=l)*P(\#5=l)\\\\P(X=8) = 0.43^5=0.0147

You might be interested in
A project has an initial cash outflow of $19,927 and produces cash inflows of $17,329, $19,792, and $23,339 for Years 1 through
andreev551 [17]
The movie rate is going to be about 2 or 3 percent
8 0
3 years ago
We roll two fair 6-sided dice, A and B. Each one of the 36 possible outcomes is assumed to be equally likely. 1) Find the probab
Jlenok [28]

Answer:

1) 41.67% probability that dice A is larger than dice B.

2) Given hat the roll resulted in a sum of 5 or less, there is a 20% conditional probability that the two dice were equal.

3) Given that the two dice land on different numbers there is a 26.67% conditional probability that the two dice differed by 2.

Step-by-step explanation:

A probability is the number of desired outcomes divided by the number of total outcomes.

In this problem, we have these possible outcomes:

Format(Dice A, Dice B)

(1,1), (1,2), (1,3), (1,4), (1,5),(1,6)

(2,1), (2,2), (2,3), (2,4), (2,5),(2,6)

(3,1), (3,2), (3,3), (3,4), (3,5),(3,6)

(4,1), (4,2), (4,3), (4,4), (4,5),(4,6)

(5,1), (5,2), (5,3), (5,4), (5,5),(5,6)

(6,1), (6,2), (6,3), (6,4), (6,5),(6,6)

There are 36 possible outcomes.

1) Find the probability that dice A is larger than dice B.

Desired outcomes:

(2,1)

(3,1), (3,2)

(4,1), (4,2), (4,3)

(5,1), (5,2), (5,3), (5,4)

(6,1), (6,2), (6,3), (6,4), (6,5)

There are 15 outcomes in which dice A is larger than dice B.

There are 36 total outcomes.

So there is a 15/36 = 0.4167 = 41.67% probability that dice A is larger than dice B.

2) Given that the roll resulted in a sum of 5 or less, find the conditional probability that the two dice were equal.

Desired outcomes:

Sum of 5 or less and equal

(1,1), (2,2)

There are 2 desired outcomes

Total outcomes:

Sum of 5 or less

(1,1), (1,2), (1,3), (1,4)

(2,1), (2,2), (2,3)

(3,1), (3,2)

(4,1)

There are 10 total outcomes.

So given hat the roll resulted in a sum of 5 or less, there is a 2/10 = 20% conditional probability that the two dice were equal.

3) Given that the two dice land on different numbers, find the conditional probability that the two dice differed by 2.

Desired outcomes

Differed by 2

(1,3), (2,4), (3,1), (3,5),(4,2),(4,6), (5,3), (6,4).

There are 8 total outcomes in which the dices differ by 2.

Total outcomes:

There are 30 outcomes in which the two dice land of different numbers.

So given that the two dice land on different numbers there is a 8/30 = 0.2667 = 26.67% conditional probability that the two dice differed by 2.

7 0
3 years ago
In order for the parallelogram to<br> be a square, x = [ ? ].
insens350 [35]

Answer: x=6

Step-by-step explanation:

6 0
3 years ago
Find the equation of the line that passes through the points (3,-2) and (6,-8)
Karolina [17]

Answer:

2x + y = 4

Step-by-step explanation:

The two-point form of the equation of a line is:

y - y_1 = \dfrac{y_2 - y_1}{x_2 - x_1}(x - x_1)

We have:

x1 = 3

y1 = -2

x2 = 6

y2 = -8

Plug in all the values where they belong in the equation above.

y - (-2) = \dfrac{-8 - (-2)}{6 - 3}(x - 3)

Simplify.

y + 2 = \dfrac{-6}{3}(x - 3)

y + 2 = -2(x - 3)

y + 2 = -2x + 6

2x + y = 4

3 0
3 years ago
Larry makes sandwiches for lunch every day. He can make 6 sandwiches with every 3 tomatoes he buys. If he bought 9 tomatoes, how
Nikitich [7]
Answer - 18 ..

Explanation :

7 0
3 years ago
Read 2 more answers
Other questions:
  • Lenny was putting bricks around his porch area. He paid $10 per brick $20 for the mortar to put around the bricks. He spent a to
    13·1 answer
  • What is the value of the expression 2.8 x 10^7 over 1.4 x 10^3
    12·2 answers
  • Which of the following statements correctly explains the coefficient of variation (CV)?
    7·1 answer
  • A construction firm bids on two different contracts. Let E1 be the event that the bid on the first contract is successful, and d
    14·1 answer
  • 3(8 – 4x) &lt; 6(x – 5)
    8·1 answer
  • PUT THESE NUMBERS FROM LEAST TO GREATEST
    15·2 answers
  • Can someone help me with all these!im giving brainliest:)
    8·1 answer
  • Find the vector that translate A (-2, 7) to A' (6,4) *
    10·2 answers
  • What is 60% of 150? Please answer.
    15·2 answers
  • This is due today please helpppp meeee I really need help
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!