From the right hand side, we will need to find a way to rewriting 3x²y in terms of cube roots.
We know that 27 is 3³, so if we were to rewrite it in terms of cube roots, we will need to multiply everything by itself two more twice. (ie we can rewrite it as ∛(3x²y)³)
Hence, we can say that it's:
![\sqrt[3]{162x^{c}y^{5}} = \sqrt[3]{(3x^{2}y)^{3}} * \sqrt[3]{6y^{d}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B162x%5E%7Bc%7Dy%5E%7B5%7D%7D%20%3D%20%5Csqrt%5B3%5D%7B%283x%5E%7B2%7Dy%29%5E%7B3%7D%7D%20%2A%20%5Csqrt%5B3%5D%7B6y%5E%7Bd%7D%7D)
![= \sqrt[3]{162x^{6}y^{3+d}}](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B162x%5E%7B6%7Dy%5E%7B3%2Bd%7D%7D)
Hence, c = 6 and d = 2
The midpoint of the line segment with endpoints at the given coordinates (-6,6) and (-3,-9) is 
<u>Solution:</u>
Given, two points are (-6, 6) and (-3, -9)
We have to find the midpoint of the segment formed by the given points.
The midpoint of a segment formed by
is given by:


Plugging in the values in formula, we get,

Hence, the midpoint of the segment is 
I got 39 tables.
134+167=301
301/7=43
Total amount of people =344
344/9=38.222 which you would round to 39 tables
Answer:
A,D,C would be your answers
Step-by-step explanation:
The answer is 16 can u give me brainliest hehehe