Answer:
Step-by-step explanation:

<h2 /><h2>
<u>Consider</u></h2>

<h2>
<u>W</u><u>e</u><u> </u><u>K</u><u>n</u><u>o</u><u>w</u><u>,</u></h2>




So, on substituting all these values, we get




<h2>Hence,</h2>

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
<h2>ADDITIONAL INFORMATION :-</h2>
Sign of Trigonometric ratios in Quadrants
- sin (90°-θ) = cos θ
- cos (90°-θ) = sin θ
- tan (90°-θ) = cot θ
- csc (90°-θ) = sec θ
- sec (90°-θ) = csc θ
- cot (90°-θ) = tan θ
- sin (90°+θ) = cos θ
- cos (90°+θ) = -sin θ
- tan (90°+θ) = -cot θ
- csc (90°+θ) = sec θ
- sec (90°+θ) = -csc θ
- cot (90°+θ) = -tan θ
- sin (180°-θ) = sin θ
- cos (180°-θ) = -cos θ
- tan (180°-θ) = -tan θ
- csc (180°-θ) = csc θ
- sec (180°-θ) = -sec θ
- cot (180°-θ) = -cot θ
- sin (180°+θ) = -sin θ
- cos (180°+θ) = -cos θ
- tan (180°+θ) = tan θ
- csc (180°+θ) = -csc θ
- sec (180°+θ) = -sec θ
- cot (180°+θ) = cot θ
- sin (270°-θ) = -cos θ
- cos (270°-θ) = -sin θ
- tan (270°-θ) = cot θ
- csc (270°-θ) = -sec θ
- sec (270°-θ) = -csc θ
- cot (270°-θ) = tan θ
- sin (270°+θ) = -cos θ
- cos (270°+θ) = sin θ
- tan (270°+θ) = -cot θ
- csc (270°+θ) = -sec θ
- sec (270°+θ) = cos θ
- cot (270°+θ) = -tan θ
Answer: See explanation
Step-by-step explanation:
Let the cost for insuring the applicant = a.
Let the cost for insuring the spouse = b
Let the cost for insuring the first child= c
Let the cost for insuring the second child = d
A 35-year-old health insurance plan and that of his or her spouse costs $301 per month. This means that:
a + b = $301.
That rate increased to $430 per month if a child were included. This means the cost of a child will be:
= $430 - $301
= $129
The rate increased to $538 per month if two children were included. This means the cost for the second child will be:
= $538 - $430
= $108
The rate dropped to $269 per month for just the applicant and one child. His will be the cost of the applicant and a single child. This can be written as:
a + $129 = $269
a = $269 - $129
a = $140
Since a + b = $301
$140 + b = $301
b = $301 - $140
b = $161
Applicant = $140
The spouse = $161
The first child = $129
The second child = $108
<u>Answer-</u> Length of the curve of intersection is 13.5191 sq.units
<u>Solution-</u>
As the equation of the cylinder is in rectangular for, so we have to convert it into parametric form with
x = cos t, y = 2 sin t (∵ 4x² + y² = 4 ⇒ 4cos²t + 4sin²t = 4, then it will satisfy the equation)
Then, substituting these values in the plane equation to get the z parameter,
cos t + 2sin t + z = 2
⇒ z = 2 - cos t - 2sin t
∴ 


As it is a full revolution around the original cylinder is from 0 to 2π, so we have to integrate from 0 to 2π
∴ Arc length



Now evaluating the integral using calculator,
