I believe the answer is B, Oval.
I think it’s 4 but not sure
Answer:
r = √13
Step-by-step explanation:
Starting with x^2+y^2+6x-2y+3, group like terms, first x terms and then y terms: x^2 + 6x + y^2 -2y = 3. Please note that there has to be an " = " sign in this equation, and that I have taken the liberty of replacing " +3" with " = 3 ."
We need to "complete the square" of x^2 + 6x. I'll just jump in and do it: Take half of the coefficient of the x term and square it; add, and then subtract, this square from x^2 + 6x: x^2 + 6x + 3^2 - 3^2. Then do the same for y^2 - 2y: y^2 - 2y + 1^2 - 1^2.
Now re-write the perfect square x^2 + 6x + 9 by (x + 3)^2. Then we have x^2 + 6x + 9 - 9; also y^2 - 1y + 1 - 1. Making these replacements:
(x + 3)^2 - 9 + (y - 1)^2 -1 = 3. Move the constants -9 and -1 to the other side of the equation: (x + 3)^2 + (y - 1)^2 = 3 + 9 + 1 = 13
Then the original equation now looks like (x + 3)^2 + (y - 1)^2 = 13, and this 13 is the square of the radius, r: r^2 = 13, so that the radius is r = √13.
"Jake can mulch a garden in 30 minutes." So, for 1 min Jake can mulch 1/30 part of a garden.
Ross can mulch the park for x minutes. So, for 1 min Jake can mulch 1/x part of a garden.
If they work together, for 1 min they will mulch (1/30 + 1/x) part of the garden.
At the same time, we know, that of they work together they can mulch the garden in 16 min, so for 1 min they will mulch 1/16 part of the garden.
Now, we can write an equation

x≈34.3 (min)
solution:
Attribute is not type of variable, instead, attributes are the categories of a categorical variable. For example: if variable is gender, attributes are male , female.
The number of robberies is not continuous because it connot take all values in a continuous interaval.
The number of robberies is quantitative because the value is numeric (discrete)
It is not qualitative because it is not nominal.