Answer:
number of moles = 0.21120811
Explanation:
To find the number of moles, given the mass of the solute, we use the formula:




Label the variables with the numbers in the problem:



The first thing we have to do is find the molar mass of sodium sulfate, in order for us to use the formula for finding the number of moles:
Formula for finding the molar mass of sodium sulfate:

For the variables and what they mean are below for finding the molar mass of sodium sulfate:





Plug the numbers into the formula, to find the molar mass of sodium sulfate:











Now that we have found the molar mass, we can calculate the number of moles in the solution of sodium sulfate with the formula:








0.21120811 rounded gives you 0.2112
or if you did the problem without decimals
30 grams of sodium sulfate divided by its molecular weight – which we found to be 142 – gives us a value of 0.2113 moles.
Answer:
• The actual number of moles of each element in the smallest unit of the compound. •In water (H 2 O), ammonia (NH 3), methane (CH 4), and ionic compounds, the empirical and molecular
Explanation:
Answer: 
Explanation:
Elevation in boiling point is given by:

= Elevation in boiling point
i= vant hoff factor = 3 (number of ions an electrolyte produce on complete dissociation)

= freezing point constant = 
m= molality

Weight of solvent (water)= 1.000 kg
Molar mass of solute
= 142 g/mol
Mass of solute
= 175.0 g


Thus the boiling point of water when 175.0 g of
, a strong electrolyte is dissolved in 1.000 Kg of water is 
Answer:B
Explanation:
omplementary colors are two opposing colors that can be found on the color wheel.
Wavelength is measured from crest to crest.