Answers:
8.70 g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s <em>gather all the information</em> in one place.
M_r: 32.00 44.01
2C₈H₁₈ + 25O₂ ⟶ 16CO₂ + 18H₂O
m/g: 9.88
(a) Calculate the <em>moles of O₂
</em>
n = 9.88 g O₂ ×1 mol O₂ /32.00 g O₂
n = 0.3088 mol O₂
(b) Calculate the <em>moles of CO₂</em>
The molar ratio is (16 mol CO₂/25 mol O₂)
n = 0.3088 mol O₂ × (16 mol CO₂/25 mol O₂)
n = 0.1976 mol CO₂
(c) Calculate the <em>mass of CO₂
</em>
Mass of CO₂ = 0.1976 mol CO₂ × (44.01 g CO₂/1 mol CO₂)
Mass of CO₂ = 8.70 g CO₂
Answer: 0.0000332mol
Explanation: 1mole of CCl4 contains 6.02x10^23 molecules.
Therefore, X mol of CCl4 will contain 2 x 10^19 molecules i.e
Xmol of CCl4 = 2 x 10^19/ 6.02x10^23 = 0.0000332mol
Answer: In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.
Explanation:
I would say the answer is C
Answer:
The correct answer is - A. Each organ does part of a larger job.
Explanation:
An organ in an organ system of an individual organism is the group of similar tissues that collectively perform a common function in the organ system and play their part in a larger job.
A group of organs makes an organ system to perform a particular but large function in the organism for its survival. An example of the organ in an organ system is the heart in the cardiovascular system. The heart is an organ that pumps the blood out of the heart to the various part of the cardiovascular system such as lungs, arteries, and veins so it can take nutrients and oxygen to various parts carried by the blood.