Answer:
You can find in the given attachemnet
The decay of a radioactive isotope can be predicted using the formula: A = Ao[2^(-t/T_0.5)] where A is the amount after time t, Ao is the original amount and T_0.5 is the half-life. Using the equation and the given values, 0.888 g of the sample will remain after 72 minutes.
Answer:
5.158 mol/L
Explanation:
To find the molarity, you need to use the formula:
Molarity (M) = moles / volume (L)
You have been grams sodium carbonate. You need to (1) convert grams Na₂CO₃ to moles (via molar mass), then (2) convert moles Na₂CO₃ to moles HCl (via mole-to-mole ratio from equation), then (3) convert mL to L (by dividing by 1,000), and then (4) use the molarity equation.
<u>Steps 1 - 2:</u>
2 HCl + 1 Na₂CO₃ ----> 2 NaCl + H₂O + CO₂
6.5287 g Na₂CO₃ 1 mole 2 moles HCl
-------------------------- x ------------- x ------------------------- = 0.12318 mole HCl
106 g 1 mole Na₂CO₃
<u>Step 3:</u>
23.88 mL / 1,000 = 0.02388 L
<u>Step 4:</u>
Molarity = moles / volume
Molarity = 0.12318 mole / 0.02388 L
Molarity = 5.158 mole/L
**mole/L is equal to M**
Acids react with calcium carbonate and more specifically carbonate to form carbon dioxide. An acid will give protons to the carbonate anion to produce carbonic acid which then decomposes into carbon dioxide and water. I hope this helps. Let me know if anything is unclear.