What are you trying to do here?
Solve the graph, or make it appear as something else?
First, we're going to take one sec (x) out so that we get:
sec (x) (2sec (x) -1 -1) = 0
sec (x) (2sec (x) -2) = 0
Then we're going to separate the two to find the zeros of each because anything time 0 is zero.
sec(x) = 0
2sec (x) - 2 = 0
Now, let's simplify the second one as the first one is already.
Add 2 to both sides:
2sec (x) = 2
Divide by 3 on both sides:
sec (x) = 1
I forgot my unit circle, so you'd have to do that by yourself. Hopefully, I helped a bit though!
Answer:
0.7061 = 70.61% probability she will have her first crash within the first 30 races she runs this season
Step-by-step explanation:
For each race, there are only two possible outcomes. Either the person has a crash, or the person does not. The probability of having a crash during a race is independent of whether there was a crash in any other race. This means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
A certain performer has an independent .04 probability of a crash in each race.
This means that 
a) What is the probability she will have her first crash within the first 30 races she runs this season
This is:

When 
We have that:



0.7061 = 70.61% probability she will have her first crash within the first 30 races she runs this season
Answer:
Step-by-step explanation:
Direct variation has the form y=kx, given k=7 and x=20
y=7(20)=140