The moon is moving away from Earth at a rate of approximately 3.78 cm per year.
This migration of the Moon from the Earth is mainly due to the action of the Earth tides. It can be explained as follows:
- the Moon exerts a gravitational force on the Earth, which is stronger at the Equator (since the Equator is closer to the Moon), creating the tides
- However, the Earth rotates faster on its axis (one rotation every 24 hours) than the Moon (one rotation every 27 days), therefore the tidal bulge on Earth tries to pull the Moon "ahead" in its orbit. As a result, the Moon tends to sped up.
<span>- As opposite reaction, the Earth tends to slow down in its rotation, with a loss of angular momentum. Since the angular momentum must be conserved, the radius of the orbit of the Moon becomes larger, and this explains why the Moon is moving away from the Earth.</span>
Answer:
cause Ice is lighter than sunglasses
Kinetic and Potential Energy HistoryA roller coaster train going down hill represents merely a complex case as a body is descending an inclined plane. Newton's first two laws relate force and acceleration, which are key concepts in roller coaster physics. At amusement parks, Newton's laws can be applied to every ride. These rides range from 'The Swings' to The 'Hammer'. Newton was also one of the developers of calculus which is essential to analyzing falling bodies constrained on more complex paths than inclined planes. A roller coaster rider is in an gravitational field except with the Principle of Equivalence.Potential EnergyPotential energy is the same as stored energy. The "stored" energy is held within the gravitational field. When you lift a heavy object you exert energy which later will become kinetic energy when the object is dropped. A lift motor from a roller coaster exerts potential energy when lifting the train to the top of the hill. The higher the train is lifted by the motor the more potential energy is produced; thus, forming a greater amount if kinetic energy when the train is dropped. At the top of the hills the train has a huge amount of potential energy, but it <span>has very little kinetic energy.Kinetic Energy The word "kinetic" is derived from the Greek word meaning to move, and the word "energy" is the ability to move. Thus, "kinetic energy" is the energy of motion --it's ability to do work. The faster the body moves the more kinetic energy is produced. The greater the mass and speed of an object the more kinetic energy there will be. Hope this helped:))))</span>
Explanation:
Answer. Due to stroking the piece of steel, the domains which are randomly arranged get aligned in the direction of stroking by the magnet. Due to this alignment of the domains, the piece of steel attains magnetic properties.
Answer:
A) U₀ = ϵ₀AV²/2d
B) U₁ = (ϵ₀AV²)/6d
This means that the new energy of the capacitor is (1/3) of the initial energy before the increased separation.
C) U₂ = (kϵ₀AV²)/2d
Explanation:
A) The energy stored in a capacitor is given by (1/2) (CV²)
Energy in the capacitor initially
U₀ = CV²/2
V = voltage across the plates of the capacitor
C = capacitance of the capacitor
But the capacitance of a capacitor depends on the geometry of the capacitor is given by
C = ϵA/d
ϵ = Absolute permissivity of the dielectric material
ϵ = kϵ₀
where k = dielectric constant
ϵ₀ = permissivity of free space/air/vacuum
A = Cross sectional Area of the capacitor
d = separation between the capacitor
If air/vacuum/free space are the dielectric constants,
So, k = 1 and ϵ = ϵ₀
U₀ = CV²/2
Substituting for C
U₀ = ϵ₀AV²/2d
B) Now, for U₁, the new distance between plates, d₁ = 3d
U₁ = ϵ₀AV²/2d₁
U₁ = ϵ₀AV²/(2(3d))
U₁ = (ϵ₀AV²)/6d
This means that the new energy of the capacitor is (1/3) of the initial energy before the increased separation.
C) U₂ = CV²/2
Substituting for C
U₂ = ϵAV²/2d
The dielectric material has a dielectric constant of k
ϵ = kϵ₀
U₂ = (kϵ₀AV²)/2d