Answer:
La velocidad del haz de electrones es 1.78x10⁵ m/s. Este valor se obtuvo asumiendo que el campo magnético dado (3500007) estaba en tesla y que la fuerza venía dada en nN.
Explanation:
Podemos encontrar la velocidad del haz de electrones usando la Ley de Lorentz:
(1)
En donde:
F: es la fuerza magnética = 100 nN
q: es el módulo de la carga del electron = 1.6x10⁻¹⁹ C
v: es la velocidad del haz de electrones =?
B: es el campo magnético = 3500007 T
θ: es el ángulo entre el vector velocidad y el campo magnético = 90°
Introduciendo los valores en la ecuación (1) y resolviendo para "v" tenemos:
Este valor se calculó asumiendo que el campo magnético está dado en tesla (no tiene unidades en el enunciado). De igual manera se asumió que la fuerza indicada viene dada en nN.
Entonces, la velocidad del haz de electrones es 1.78x10⁵ m/s.
Espero que te sea de utilidad!
Answer:
if i were you i would try to do the work because if you let someone else you wont be able to understand the question
Centripetal acceleration is directed along a radius so it may also be called the radial acceleration. If the speed is not constant, then there is also a tangential acceleration (at). The tangential acceleration is, indeed, tangent to the path of the particle's motion.
Answer: Current, resistance and voltage are the quantities which are related by Ohm's law.
Explanation:
A law which states that electric current is directly proportional to voltage and inversely proportional to resistance is called Ohm's law.
Mathematically, it is represented as follows.

where,
I = current
V = voltage
R = resistance
This means that the quantities related by Ohm's law include current, voltage and resistance.
Thus, we can conclude that current, resistance and voltage are the quantities which are related by Ohm's law.
Answer:
Induced emf in the coil, E = 0.157 volts
Explanation:
It is given that,
Number of turns, N = 100
Diameter of the coil, d = 3 cm = 0.03 m
Radius of the coil, r = 0.015 m
A uniform magnetic field increases from 0.5 T to 2.5 T in 0.9 s.
Due to this change in magnetic field, an emf is induced in the coil which is given by :


E = -0.157 volts
Minus sign shows the direction of induced emf in the coil. Hence, the induced emf in the coil is 0.157 volts.