T = tension force in the rope in upward direction
m = mass of the box attached at end of rope = 56 kg
W = weight of the box in downward direction due to gravity
a = acceleration of the box in upward direction = 5.10 m/s²
weight of the box is given as
W = mg
inserting the values
W = (56) (9.8)
W = 548.8 N
force equation for the motion of the box is given as
T - W = ma
inserting the values
T - 548.8 = (56) (5.10)
T = 834.4 N
They are unbalanced forces ..... Hope this helps :3
Answer:
Q = 913.9 gpm
Explanation:
The Hazen Williams equation can be written as follows:

where,
P = Friction Loss per foot of pipe =
= 4 x 10⁻⁴
Q = Flow Rate in gallon/min (gpm) = ?
d = pipe diameter in inches = (400 mm)(0.0393701 in/1 mm) = 15.75 in
C = roughness coefficient = 100
Therefore,

<u>Q = 913.9 gpm</u>
Two things can happen to <u>old satellites</u>: For the closer satellites, engineers will use its last bit of fuel to slow it down so it will fall out of orbit and burn up in the atmosphere. Further satellites are instead sent even farther away from Earth.
By equation of motion we have v = u + at
Where u = Initial velocity, v = final velocity, t = time taken and a = acceleration
Here v = 141 m/s, u = 17.7 m/s and t = 6 s
On substitution we will get
141 = 17.7+ 6a
So, a = (141-17.7)/6 = 20. 55 m/
Aceeleration = 20. 55 m/
along north direction.