Answer:
Explanation:
A ) When gymnast is motionless , he is in equilibrium
T = mg
= 63 x 9.81
= 618.03 N
B )
When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.
T = mg
= 618.03 N
C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2
Net force on it = T - mg , acting in upward direction
T - mg = m a
T = mg + m a
= m ( g + a )
= 63 ( 9.81 + .6)
= 655.83 N
D ) If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2
Net force acting in downward direction
mg - T = ma
T = m ( g - a )
= 63 x ( 9.81 - .6 )
= 580.23 N
<span>A. social issues!
Hope this assists you!</span>
Answer:
the correct one is D,
Ultraviolet, x-ray, gamma ray
Explanation:
Electromagnetism radiation are waves of energy that is expressed by the Planck relationship
E = h f
where h is the plank constant and f the frequency of the radiation.
Also the speed of light is
c = λ f
we substitute
E = h c /λ
therefore to damage the cells of the body radiation of appreciable energy is needed
microwave radiation has an energy of 10⁻⁵ eV
infrared radiation E = 10⁻² eV
visible radiation E = 1 to 3 eV
radiation Uv E = 3 to 6 eV
X-ray E = 10 eV
gamma rays E = 10 5 eV
therefore we see that the high energy radiation is gamma rays, x-rays and ultraviolet light.
When checking the answers, the correct one is D
[r] =6
Solve for r by simplifying both sides of the equation, then isolating the variable.
<em> </em>I hope this makes sense
Answer:
okjjjjkkkkjjjjhhjjikhggbvvh