Answer:
A conduction is the answer
Explanation:
<span>From the point of view of the astronaut, he travels between planets with a speed of 0.6c. His distance between the planets is less than the other bodies around him and so by applying Lorentz factor, we have 2*</span>√1-0.6² = 1.6 light hours. On the other hand, from the point of view of the other bodies, time for them is slower. For the bodies, they have to wait for about 1/0.6 = 1.67 light hours while for him it is 1/(0.8) = 1.25 light hours. The remaining distance for the astronaut would be 1.67 - 1.25 = 0.42 light hours. And then, light travels in all frames and so the astronaut will see that the flash from the second planet after 0.42 light hours and from the 1.25 light hours is, 1.25 - 0.42 = 0.83 light hours or 49.8 minutes.
Answer:
the answer is at the BOTTOM OF THEIR QUESTION
Explanation:
IT IS CORRECT BTW
Answer:
d = 421.83 m
Explanation:
It is given that,
Height, h = 396.9 m
Horizontal speed, v = 46.87 m/s
We need to find the distance traveled by the ball horizontally. Let t is the time taken by the ball. Using second equation of motion for vertical direction. So,

Now d is the distance covered by the cannonball. So,

Hence, this is the required solution.
Answer:
rama is doing
Explanation:
work done=f×d×g
=60×20×9.8
=11760j
she is doing work against gravity
mark me