The asker of the second question needs a tutorial in radiometric dating. There is little likelihood that the daughter isotope has the same atomic weight as the parent isotope. To measure the mass isotopes doesn't tell us how many atoms of each exist. To get around that let's pretend — which will likely serve the purpose ineptly intended — that the values give an the particle ratio, 125:875.
<span>The original parent isotope count was 125 + 875 = 1000. The remaining parent isotope is 125/1000 or 1/8. 1/8 = (1/2)^h, where h is the number of half-lives. </span>
<span>h = log (1/8) ÷ log(1/2) = 3 </span>
<span>And 3 half-lives • 150,000 years/half-life = 450,000 years.</span>
The last one, the soil will become weak & unable to support plant growth
<span>conservation of momentum
mass(ball) × speed(ball) = mass(cannon) × speed(cannon)
(8.3 kg) × (187.9 m/s) = (949.3 kg) × v
1.64 m/s = v
</span>
Answer:
Explanation:
given that
Radius =0.75m
Cnet=0.13nC
a. Electric field inside the sphere located 0.5m from the center of the sphere.
The electric field located inside the sphere is zero.
b. The electric field located 0.25m beneath the sphere.
Since the radius is 0.75m
Then, the total distance of the electric field from the centre of the circle is 0.75+0.25=1m
Then
E=kq/r2
K=9e9Nm2/C2
q=0.13e-9C
r=1m
Then,
E= 9e9×0.13e-9/1^2
E=1.17N/C. Q.E.D
As we know that sphere roll without slipping so there is no loss of energy in this case
so here we can say that total energy is conserved
Initial Kinetic energy + initial potential energy = final kinetic energy + final potential energy

as we know that ball start from rest

height of the ball initially is given as


also we know that

also for pure rolling

also we know that


now plug in all data in above equation




So speed at the bottom of the inclined plane will be 29 rad/s