yes that's true 6g is larger
Answer:
Total impulse =
= Initial momentum of the car
Explanation:
Let the mass of the car be 'm' kg moving with a velocity 'v' m/s.
The final velocity of the car is 0 m/s as it is brought to rest.
Impulse is equal to the product of constant force applied to an object for a very small interval. Impulse is also calculated as the total change in the linear momentum of an object during the given time interval.
The magnitude of impulse is the absolute value of the change in momentum.

Momentum of an object is equal to the product of its mass and velocity.
So, the initial momentum of the car is given as:

The final momentum of the car is given as:

Therefore, the impulse is given as:

Hence, the magnitude of the impulse applied to the car to bring it to rest is equal to the initial momentum of the car.
<span>We can use an equation to find the gravitational force exerted on the HST.
F = GMm / r^2
G is the gravitational constant
M is the mass of the Earth
m is the mass of the HST
r is the distance to the center of the Earth
This force F provides the centripetal force for the HST to move in a circle. The equation we use for circular motion is:
F = mv^2 / r
m is the mass of the HST
v is the tangential speed
r is the distance to the center of the Earth
Now we can equate these two equations to find v.
mv^2 / r = GMm / r^2
v^2 = GM / r
v = sqrt{GM / r }
v = sqrt{(6.67 x 10^{-11})(5.97 x 10^{24}) / 6,949,000 m}
v = 7570 m/s which is equal to 7.570 km/s
HST's tangential speed is 7570 m/s or 7.570 km/s</span>