Answer:
2. All the naturally occurring isotopes of Mg.
Explanation:
You want to know the atomic mass of the magnesium you use in the lab. That’s “natural” magnesium. So, you must use the weighted average of all the naturally occurring isotopes in natural Mg.
1. and 3. are <em>wrong</em>. You won’t get the correct mass for natural Mg if you use only the artificial isotopes for your calculation.
4. is <em>wrong</em>. You must use all the naturally occurring isotopes. The two most abundant isotopes of Mg account for only 90 % of the atoms. If you ignore the other 10 %, your calculation will be wrong.
False. They don't borrow electrons at all. They already have their respective electron affinities. This is called as electronegativity, and it's an occurence where it already has its own from its actual structure. It never borrows any electrons at all.
Answer:
The concentration of the murexide solution is 0.0000745 M
Explanation:
From Beer-Lambert's law,
A = εlc
A = Absorbance = 28.65% = 0.2865
ε = molar absorptivity = 3847 M/cm
l = path length = 1cm
c = concentration in mol/L = ?
c = A/εl = 0.2865/(3847×1) = 0.0000745 mol/L
Hope this Helps!
Fluorite is harder than gypsum but softer than apatite. Thus, the correct option is B.
<h3>What is the hardness of any element?</h3>
The hardness of any element may be defined as the capability of a material to oppose the process of deformation and remains in actual shape precisely.
According to the table of hardness scales by Mohs, the increasing order of given hardness of given elements is as follows:
Gypsum < Fluorite < Apatite.
Therefore, Fluorite is harder than gypsum but softer than apatite. Thus, the correct option is B.
To learn more about the Hardness of elements, refer to the link:
brainly.com/question/23721736
#SPJ1
Answer: Pesticide and less than 6.65
Explanation:
E2020