Answer:
The lethal voltage for the electrician under those conditions is 126.5 V.
Explanation:
To discover what is the lethal voltage to the electrician we need to find out what is the voltage that produces 55 mA = 0.055 A when across a resistance of 2300 Ohms (Electrician's body resistancy). For that we'll use Ohm's Law wich is expressed by the following equation:
V = i*R
Where V is the voltage we want to find out, i is the current wich is lethal to the electrician and R is his body resistance. By applying the given values we have:
V = 0.055*2300 = 126.5 V.
The lethal voltage for the electrician under those conditions is 126.5 V.
A. B. D. C. D, A, A, C, B, B, D, D
Answer:

Explanation:
Two identical sticky masses m are moving in the xy-plane, with their momenta at an angle of φ with one another. They are each moving at the same speed v when they collide at the origin of the coordinates and stick together. After the collision, the masses move at an angle −θ2 with respect to the +x axis at speed v2 .1. What was the angle φ?
from the principle of momentum
In a system of colliding bodies,we know that the total momentum before collision will equal to the total momentum after collision.
Take note that momentum is the product of mass and velocity
momentum before collision=momentum after collision
mass, m
u=initial velocity of the identical masses
v2=the common velocity after the collision
Note that the collision is inelastic , since they both moved with the same velocity
umcosφ+umcosφ=(m+m)v2cos−θ2
2mucosφ=2mv2cos−θ2
