The amount of diffraction of sound waves depends on the medium the sound wave travels to and the frequency. Diffraction happens as soon as it has been out of the source.
Answer:
I = 0.25 [amp]
Explanation:
To solve this problem we must use ohm's law which tells us that the voltage is equal to the product of the current by the resistance.
V = I*R
where:
V = voltage [Volt]
I = amperage or current [amp]
R = resistance [ohm]
Since all resistors are connected in series, the total resistance will be equal to the arithmetic sum of all resistors.
Rt = 2 + 8 + 14
Rt = 24 [ohm]
Now clearing I for amperage
I = V/Rt
I = 6/24
I = 0.25 [amp].
Explanation:
you measure temperature in degrees celsius using a thermometer. Thermal energy is measured in joules. A larger volume of water will take longer to heat up but will store more energy than the smaller object. However, a smaller object will lose it's heat faster than a larger object. A cup of tea has less thermal energy than a swimming pool.
Answer:
Sunlight and almost every other form of natural and artificial illumination produces light waves whose electric field vectors vibrate in all planes that are perpendicular with respect to the direction of propagation.