D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
400m in 32sec: (400/32)>12.5meters per second>
(12.5)(60)(60)(1/1000)=45km per hour
Constant speed would mean that the two forces are equivalent
To develop this problem it is necessary to apply the concepts related to the Dopler effect.
The equation is defined by

Where
= Approaching velocities
= Receding velocities
c = Speed of sound
v = Emitter speed
And

Therefore using the values given we can find the velocity through,


Assuming the ratio above, we can use any f_h and f_i with the ratio 2.4 to 1


Therefore the cars goes to 145.3m/s
Answer:
B. 0.552
Explanation:
To find the resistance in the circuit above, u simply divide the current in the circuit by the voltage to get the resistance.
Hydrocarbons are compounds of hydrogen and carbon.
Photosynthesis is a process of nutrition in plants.
Thunder is a sound.
Lightning and electric eels are electrical phenomena in nature.