Answer:
![F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]](https://tex.z-dn.net/?f=F_T%3D6k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bi%7D%2B10k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bj%7D%3D2k%5Cfrac%7BQ%5E2%7D%7BL%7D%5B3%5Chat%7Bi%7D%2B5%5Chat%7Bj%7D%5D)


Explanation:
I attached an image below with the scheme of the system:
The total force on the charge 2Q is the sum of the contribution of the forces between 2Q and the other charges:
![F_T=F_Q+F_{3Q}+F_{4Q}\\\\F_T=k\frac{(Q)(2Q)}{R_1}\hat{i}+k\frac{(3Q)(2Q)}{R_2}\hat{j}+k\frac{(4Q)(2Q)}{R_3}[cos\theta \hat{i}+sin\theta \hat{j}]](https://tex.z-dn.net/?f=F_T%3DF_Q%2BF_%7B3Q%7D%2BF_%7B4Q%7D%5C%5C%5C%5CF_T%3Dk%5Cfrac%7B%28Q%29%282Q%29%7D%7BR_1%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B%283Q%29%282Q%29%7D%7BR_2%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B%284Q%29%282Q%29%7D%7BR_3%7D%5Bcos%5Ctheta%20%5Chat%7Bi%7D%2Bsin%5Ctheta%20%5Chat%7Bj%7D%5D)
the distances R1, R2 and R3, for a square arrangement is:
R1 = L
R2 = L
R3 = (√2)L
θ = 45°
![F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[cos(45\°)\hat{i}+sin(45\°)\hat{j}]\\\\F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[\frac{\sqrt{2}}{2}\hat{i}+\frac{\sqrt{2}}{2}\hat{j}]\\\\F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]](https://tex.z-dn.net/?f=F_T%3Dk%5Cfrac%7B2Q%5E2%7D%7BL%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B6Q%5E2%7D%7BL%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B8Q%5E2%7D%7B%5Csqrt%7B2%7DL%7D%5Bcos%2845%5C%C2%B0%29%5Chat%7Bi%7D%2Bsin%2845%5C%C2%B0%29%5Chat%7Bj%7D%5D%5C%5C%5C%5CF_T%3Dk%5Cfrac%7B2Q%5E2%7D%7BL%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B6Q%5E2%7D%7BL%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B8Q%5E2%7D%7B%5Csqrt%7B2%7DL%7D%5B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Chat%7Bi%7D%2B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Chat%7Bj%7D%5D%5C%5C%5C%5CF_T%3D6k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bi%7D%2B10k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bj%7D%3D2k%5Cfrac%7BQ%5E2%7D%7BL%7D%5B3%5Chat%7Bi%7D%2B5%5Chat%7Bj%7D%5D)
and the magnitude is:

the direction is:

Coke has more fizz than Pepsi, because Coke has more carbonation in it. Pepsi contains more sugar (2 more tablespoons) than Coke, so it tastes slightly sweeter to many people.
The magnitude is doubled. The direction doesn't change.
When you are on a huge water slide, the force present as you slide is the gravitational force. It is because the gravity enables you to slide down the water slide. The net force is the overall forces of the object, so as you slide the water slide, you may experience the net force once you slide down with the gravity and water sliding you down.
Explanation:
Given that,
The mass of rock, m = 2.35-kg
It was released from rest at a height of 21.4 m.
(a) The kinetic energy is given by : 
As the rock was at rest initially, it means, its kinetic energy is equal to 0.
(b) The gravitational potential energy is given by : 
It can be calculated as :

(c) The mechanical energy is equal to the sum of kinetic and potential energy such that,
M = 0 J + 492.84 J
M = 492.84 J
Hence, this is the required solution.