Answer: 
Explanation:
Given
Mass of water is 
mass of ice is 
Latent heat of fusion 
The heat capacity of water is 
Suppose water is at
and it reaches to
to melt the ice
the heat released by water must be equivalent to heat absorbed by the ice

The total amount of energy stays the same, but throughout the ride, the kinetic energy and the potential energy change, still adding up to the same number. At the top of the ride it has potential energy, and as it goes down the potential energy decreases and the kinetic energy increases. When it’s at the bottom of the first drop it has maxed out its kinetic energy, and minimized its potential energy. Friction slows down the car, and pushes on the cart with a force that is equal and opposite to the force being exerted in the track. The reason the track keeps going is because though it exerts and equal and opposite force the momentum of the objects is different, allowing the car to continue moving, however friction will slow it down until eventually it comes to a stop.
The person is at rest with respect to the car. So the best answer is:
c. the front seat of the car.
Answer:
Y = 4.775 x 10⁹ Pa = 4.775 GPa
Explanation:
First, we calculate the stress on the rod:

Now, we calculate the strain:

Now, we will calculate the Young's Modulus (Y):

<u>Y = 4.775 x 10⁹ Pa = 4.775 GPa</u>