Answer: 5,640 s (94 minutes)
Explanation:
the tangential speed of the HST is given by
(1)
where
is the length of the orbit
r is the radius of the orbit
T is the orbital period
In our problem, we know the tangential speed:
. The radius of the orbit is the sum of the Earth's radius and the distance of the HST above Earth's surface:

So, we can re-arrange equation (1) to find the orbital period:

Dividing by 60, we get that this time corresponds to 94 minutes.
Answer:
For cast iron we have

For copper

For Lead

For Zinc

Explanation:
As we know that final speed of the block is calculated by work energy theorem

now we have

now we have


For cast iron we have


For copper


For Lead


For Zinc


I think that the answer is friction
The string moves to the right, as it restores its original position with the median plane of the bow. As a result, the string "pulls" on the arrow with a force F2. 2. The tip of the arrow T moves slightly to the left.
pls thank me and brainliest me
Answer:
They have a dual wave-particle nature.
Explanation:
Electromagnetic waves consist of periodic oscillations of electric and magnetic field in a plane perpendicular to the direction of motion of the wave (in fact, they are also classified as transverse waves).
Electromagnetic waves have a wave nature, however they also have particle nature - in fact, it has been proved in some experiment (e.g. photoelectric effect) that in some conditions they act as packets of particles - called photons. Therefore, the option
They have a dual wave-particle nature.
is correct.
Other options are wrong because:
They are all invisible. --> False because visible light (which is part of the electromagnetic spectrum, so they are electromagnetic waves) is visible
They can only travel without a medium. --> False because they can also travel in a vacuum
They are slower than sound waves. --> False because they travel much faster (they travel at the speed of light in a vacuum,
, while sound travels at 343 m/s in air, for instance)