First we need to find the speed of the dolphin sound wave in the water. We can use the following relationship between frequency and wavelength of a wave:

where
v is the wave speed

its wavelength
f its frequency
Using

and

, we get

We know that the dolphin sound wave takes t=0.42 s to travel to the tuna and back to the dolphin. If we call L the distance between the tuna and the dolphin, the sound wave covers a distance of S=2 L in a time t=0.42 s, so we can write the basic relationship between space, time and velocity for a uniform motion as:

and since we know both v and t, we can find the distance L between the dolphin and the tuna:
D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.
Answer: Use the formula q = m·ΔHv in which q = heat energy, m = mass, and ΔHv = heat of vaporization.
Answer:
#See solution for details.
Explanation:
-Chemical energy in the battery is converted into Electrical Energy which powers up the phone.
-The electrical energy is then converted to Light Energy when the phone is powered up, this is seen through the lightening up of the phone screen.
-During phone calls, the electrical energy is further converted to Sound Energy to allow for transmission of audio signals.
- As we continue to use the phone, the electrical energy is converted into heat energy which we feel due to an overheating battery.
-The cycle then repeats itself again whenever a phone is charged.