The correct answer is false. The statement given does not describe a property in general. However, it speaks of a specific type of property which is the physical property. This property is the one that does not change the identity of a substance. A property can also be a chemical property where the identity of a substance is changed.
Answer:
The new pressure is 0.5 atm
Explanation:
Step 1: Data given
Volume of oxygen = 300 mL = 0.300 L
Pressure = 1.00 atm
Temperature = 300 K
The volume increases to 1000mL = 1.00 L
The temperature increases to 500 K
Step 2: Calculate the new pressure
(P1*V1)/T1 = (P2*V2)/T2
⇒with P1 = the initial pressure = 1.00 atm
⇒with V1 = the initial volume = 0.300 L
⇒with T1 = the initial temperature = 300 K
⇒with P2 = the new pressure = TO BE DETERMINED
⇒with V2 = the increased volume = 1.00 L
⇒with T2 = the increased temperature = 500 K
(1.00 atm* 0.300 L)/300 K = (P2 * 1.00L) / 500 K
P2 = (1.00 *0.300 * 500) / (300 *1.00)
P2 = 0.5 atm
The new pressure is 0.5 atm
The excess reactant is Aluminum.
<u>Explanation:</u>
We have to write the balanced equation as,
4 Al+ 3 O₂ → 2 Al₂O₃
According to the molar ratio 4: 3, from the given balanced equation, we can say that 4 atoms of Al reacted with 3 molecules of oxygen.
Given that 10 atoms of aluminum reacts with 6 molecules of oxygen, as per the ratio only 8 atoms of Aluminum is required to react with 6 molecules of oxygen, so excess reactant is Aluminum.
Answer:
The melting point of this substance at 1 ATM of pressure is 110°.
We can use the ideal gas law equation to find the pressure
PV = nRTwhere
P - pressure
V - volume - 2.6 x 10⁻³ m³
n - number of moles - 0.44 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 25 °C + 273 = 298 K
substituting the values into the equation,
P x 2.6 x 10⁻³ m³ = 0.44 mol x 8.314 Jmol⁻¹K⁻¹ x 298 K
P = 419 281.41 Pa
101 325 Pa is equivalent to 1 atm
Therefore 419 281.41 Pa - 1/ 101 325 x 419 281.41 = 4.13 atm
Pressure is 4.13 atm