Answer:
Q = 10.8 KJ
Explanation:
Given data:
Mass of Al= 100g
Initial temperature = 30°C
Final temperature = 150°C
Heat required = ?
Solution:
Specific heat of Al = 0.90 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 150°C - 30°C
ΔT = 120°C
Q = 100g×0.90 J/g.°C× 120°C
Q = 10800 J (10800j×1KJ/1000 j)
Q = 10.8 KJ
Answer:
4.25*10^18
Explanation:
1 mole =6.023*10^23 particles
so 7.07*10^-6 mole=6.023*10^23*7.07*10^-6 particles=4.25*10^18 particles
Answer:
the neutul atom has the same number of protons in its neclues as positive in its electron cloud#
Explanation:
Answer:
Water molecules pull the sodium and chloride ions apart
Explanation:
Answer:
The heat of solution is 1.05 kJ/mol
Explanation:
NaOH → Molar mass 40 g/m
This is the mass in 1 mol
Calorimetry formula:
Q = m . c . ΔT
ΔT = T° final - T° initial = 24.5°C - 18.2°C = 6.3°C
mass = 40 g
c = 4.186 kJ/kg°C (the same as water)
So we have to convert 40 g to kg
40 g/1000 = 0.04 kg
Q = 0.04 kg . 4.186 kJ/kg°C . 6.3 °C = 1.05 kJ