<h3><u>Answer;</u></h3>
A) HNO3 and NO3^-
<h3><u>Explanation;</u></h3>
- <em><u>HNO3 is a strong acid and NO3 is its conjugate base, meaning it will not have any tendency to withdraw H+ from solution.</u></em>
- Buffers are often prepared by mixing a weak acid or base with a salt of that weak acid or base.
- The buffers resist changes in pH since they contain acids to neutralize OH- and a base to neutralize H+. Acid and base can not consume each other in neutralization reaction.
Explanation:
The answer is H2SO4 for sulphuric acid
Answer:
javier applied force how this helps
P = 2.30 atm
Volume in liter = 2.70 mL / 1000 => 0.0027 L
Temperature in K = 30.0 + 273 => 303 K
R = 0.082 atm
molar mass O2 = 31.9988 g/mol
number of moles O2 :
P * V = n * R* T
2.30 * 0.0027 = n * 0.082 * 303
0.00621 = n * 24.846
n = 0.00621 / 24.846
n = 0.0002499 moles of O2
Mass of O2:
n = m / mm
0.0002499 = m / 31.9988
m = 0.0002499 * 31.9988
m = 0.008 g
Answer:
Heat energy is the result of the movement of tiny particles called atoms, molecules or ions in solids, liquids and gases. Heat energy can be transferred from one object to another. the transfer or flow from one object to another is called heat.
hopefully this helped :3