Data:
Arsenic Molar Mass = 74,9216 ≈ 75 u (<span>atomic mass unit)</span>
Solving:
1 mole of arsenic → 75g ------------ 6,02*10²³ molecules
..................................X -------------- 1 molecule
6,02*10²³X = 75

Answer:
first
Explanation:
Assets = Equity + Liability. ...
Assets = Liabilities + Shareholder's Equity.
then ans will be in your feet it's east
Answer:
CH₂ ; 67.1 %
Explanation:
To determine the empirical formula we need to find what the mole ratio is in whole numbers of the atoms in the compound. To do that we will first need the atomic weights of C and H and then perform our calculation
Assume 100 grams of the compound.
# mol C = 85.7 g / 12.01 g/mol = 7.14 mol
# mol H = 14.3 g / 1.008 g/mol = 14.19 mol
The proportion is 14.9 mol H/ 7.14 mol C = 2 mol H/ 1 mol C
So the empirical formula is CH₂
For the second part we will need to first calculate the theoretical yield for the 12.03 g NaBH₄ reacted and then calculate the percent yield given the 0.295 g B₂H₆ produced.
We need to calculate the moles of NaBH₄ ( M.W = 37.83 g/mol )
1.203 g NaBH₄ / 37.83 g/mol = 0.0318 mol
Theoretical yield from balanced chemical equation:
0.0318 mol NaBH₄ x 1 mol B₂H₆ / mol NaBH₄ = 0.0159 mol B₂H₆
Theoretical mass yield B₂H₆ = 0.0159 mol x 27.66 g/ mol = 0.440 g
% yield = 0.295 g/ 0.440 g x 100 = 67.1 %
= 30802.53 im pretty sure if im wrong let me know its the best i can do :/
Simply put, Potential energy is the "build up". If I had a ball on the top a 5ft slide, it would have potential energy, as long as it hasn't slid down yet.
If I had another ball on a 10ft slide, it would have twice the potential energy the first ball had.
What comes next is kinetic energy, which is the energy used when the object is moving, like the ball as it goes down the slide. The faster it moves, the more kinetic energy.
Basically, <em>Potential</em> is the "build up" but it does not, I repeat does not move.
<em>Kinetic</em> energy is the use of the "build up" through movement.
<span>
</span>