Answer:
2872.8 N
Explanation:
We have the following information
m =n72kg
Δy = 18m
t = 0.95s.
From here we use the equation
Δy=1/2at2 in order to solve for the acceleration.
So a
=( 2x 18m)/(0.95s²)
= 36/0.9025
= 39.9m/s2.
From there we use the equation
F = ma
F=(72kg) x (39.9)
= 2872.8N.
2872.8N is the average net force exerted on him in the barrel of the cannon.
Thank you!
Fruits and frozen fruit bars is the correct answer.
Answer:
Hiii how are you <u>doing?</u><u>?</u><u>I </u><u>don't</u><u> </u><u>understand</u><u> </u><u>that</u>
Answer:
the answer is for the question is B
Answer:
She can swing 1.0 m high.
Explanation:
Hi there!
The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).
The kinetic energy is calculated as follows:
KE = 1/2 · m · v²
And the potential energy:
PE = m · g · h
Where:
m = mass of Jane.
v = velocity.
g = acceleration due to gravity (9.8 m/s²).
h = height.
Then:
ME = KE + PE
Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:
ME = KE + PE (PE = 0)
ME = KE
ME = 1/2 · m · (4.5 m/s)²
ME = m · 10.125 m²/s²
When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:
ME = KE + PE (KE = 0)
ME = PE
ME = m · 9.8 m/s² · h
Then, equallizing both expressions of ME and solving for h:
m · 10.125 m²/s² = m · 9.8 m/s² · h
10.125 m²/s² / 9.8 m/s² = h
h = 1.0 m
She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).