Answer:
height from where rock was thrown is 27.916 m
Explanation:
speed = 7.50 m/s
θ = 30°
g= 9.8 m/s²
horizontal distance = 18 m
time require for vertical displacement

t = 2.8 sec
now for calculation of height
s = ut + 0.5 a t²
-h = v sinθ× t + 0.5 ×(-9.8)× (2.8²)
-h = 7.5 sin30°× 2.8 - 0.5 ×(9.8)× (2.8²)
-h = -27.916 m
h= 27.916 m
height from where rock was thrown is 27.916 m
Answer:
Decrease the slit separation, increase the distance of the screen from the slits, and increase the wavelength.
Explanation:
The distance
from the central band to the first bright band is given by

where
is the wavelength of light (or any particle),
is the distance to the screen, and
is the slit separation.
From this equation we see that, by increasing the wavelength
, increasing the distance from the screen
, and decreasing the slit separation
, we increase the distance between the first bright band and the central band.
Therefore, the 2nd choice "<em>Decrease the slit separation, increase the distance of the screen from the slits, and increase the wavelength.</em>" is correct.
Answer:
From Wikipedia:
"A synovial joint, also known as diarthrosis, joins bones or cartilage with a fibrous joint capsule that is continuous with the periosteum of the joined bones, constitutes the outer boundary of a synovial cavity, and surrounds the bones' articulating surfaces. The synovial cavity/joint is filled with synovial fluid."
Answer:
the ratio of the heat rejected to the cold reservoir for the improved engine to that for the original engine is 0.68
Explanation:
Given information
initial efficiency, η
= 0.28
final efficiency, η
= 0.51
ratio of the heat rejected = (1 - η
)/(1 - η
)
= (1 - 0.51)/(1 - 0.28)
= 0.68
Answer:
x=±0.026m
Explanation:
In simple harmonic motion the maximum value of the magnitude of velocity

The speed as a function of position for simple harmonic oscillator is given by

where A is amplitude of motion
Given data
Amplitude A=3 cm =0.03 m
v=(1/2)Vmax
To find
We have asked to find position x does its speed equal half of is maximum speed
Solution
The speed of the particle the maximum speed as:

x=±(√3(0.03)/2)
x=±0.026m