Answer:
The correct answer is a) The kinetic energy of the ice increases by equal amounts for equal distances.
Explanation:
The law of conservation states that the energy cannot be created nor be destroyed but can be converted from one form to another.Before the ice even starts falling we already know that it possesses energy in the form of potential energy given by P=mgh where m is the mass of the ice , g is the acceleration due to gravity and h is the height of the ice above the ground whatever that may be, since a number is not given here.As the ice falls the energy is converted from potential energy to kinetic energy. We notice one thing about the equation for the potential energy P , which is that it is not only directly proportional to h but also is linear in h as well(which is the main reason why a) is correct) which means that if the ice drops by 1 meter the potential energy it will have lost would be ΔPE=mgΔh=-mg, where Δh is the change in its height which is 1 meter here.And according to the principle of conservation of energy this energy must be converted to kinetic energy so the ΔKE=-ΔPE=mg, and this process repeats and for each meter it falls, it picks up the same amount of kinetic energy equaling mg(which is the same as the loss in PE per each meter of fall). So a 2 meter decrease in height will result in an increase in KE of 2mg, a 3 meter decrease in height will result in an increase in KE of 3mg. gain in kinetic energy only depends on the drop in height, which is true irrespective of where the ice might happen to be in its journey close to the top or the bottom. So the drop in height of lets say x at any point in the journey will result in the same increase in KE = ΔKE = mgx. Which proves part a) to be correct.
Answer:
Removing some of the books reduced the mass of the box, and less force was needed to push it across the floor.
Answer: 29.50 m
Explanation: In order to calculate the higher accelation to stop a train without moving the crates inside the wagon which is traveling at constat speed we have to use the second Newton law so that:
f=μ*N the friction force is equal to coefficient of static friction multiply the normal force (m*g).
f=m.a=μ*N= m*a= μ*m*g= m*a
then
a=μ*g=0.32*9.8m/s^2= 3.14 m/s^2
With this value we can determine the short distance to stop the train
as follows:
x= vo*t- (a/2)* t^2
Vf=0= vo-a*t then t=vo/a
Finally; x=vo*vo/a-a/2*(vo/a)^2=vo^2/2a= (49*1000/3600)^2/(2*3.14)=29.50 m
Answer:

Explanation:
As we know that moment of force is given as

now we have


now from above formula we have

here we know that

so we have


Answer: They are in the same group because they have similar chemical properties, but they are in different periods because they have very different atomic numbers.
Explanation: On Edgenuity!!